版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江西南康市南康中学数学高三第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A. B. C. D.2.在长方体中,,则直线与平面所成角的余弦值为()A. B. C. D.3.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则4.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.5.已知倾斜角为的直线与直线垂直,则()A. B. C. D.6.集合的子集的个数是()A.2 B.3 C.4 D.87.函数的图象如图所示,则它的解析式可能是()A. B.C. D.8.某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为()A. B. C. D.9.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.505010.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.4 B.6 C.3 D.811.若复数满足,则()A. B. C.2 D.12.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.14.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.15.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.16.下图是一个算法流程图,则输出的的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.18.(12分)已知实数x,y,z满足,证明:.19.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.20.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.21.(12分)在四棱锥的底面中,,,平面,是的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.22.(10分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设左焦点的坐标,由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为:所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.2、C【解析】
在长方体中,得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.3、C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.4、D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.5、D【解析】
倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.6、D【解析】
先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.7、B【解析】
根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项,与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.8、B【解析】
利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,,解得.故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.9、C【解析】
因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.10、A【解析】
根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,,则,即,故函数在上单调递增,故,令,,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.11、D【解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.12、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.【详解】解:的实部与虚部相等,所以,计算得出.故答案为:【点睛】本题考查复数的乘法运算和复数的概念,属于基础题.14、【解析】
先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.15、【解析】
先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.16、3【解析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【详解】解:初始,第一次循环:;第二次循环:;第三次循环:;经判断,此时跳出循环,输出.故答案为:【点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.【详解】(1)由,消去可得,设,,则,.,解得或(舍去),.(2)证明:由(1)可得,设,所以直线的方程为,当时,,则,代入抛物线方程,可得,,所以直线的斜率,直线的方程为,整理可得,故直线过定点.【点睛】本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.18、见解析【解析】
已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,...【点睛】本题考查柯西不等式的应用,属于基础题.19、(1);(2)【解析】
(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.20、(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.21、(Ⅰ)详见解析;(Ⅱ);(Ⅲ)存在,点为线段的中点.【解析】
(Ⅰ)连结,,,则四边形为平行四边形,得到证明.(Ⅱ)建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.(Ⅲ)设,计算,,根据垂直关系得到答案.【详解】(Ⅰ)连结,,,则四边形为平行四边形.平面.(Ⅱ)平面,四边形为正方形.所以,,两两垂直,建立如图所示坐标系,则,,,,设平面法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南昌大学第一附属医院院前急救科驾驶员岗招聘1人笔试备考试题及答案解析
- 2026河南平顶山枫叶高级中学教师招聘笔试备考试题及答案解析
- 2026年湖北城市建设职业技术学院单招综合素质笔试模拟试题含详细答案解析
- 2026福建省电子口岸运营服务有限公司社会招聘1人(Java全栈工程师)笔试备考试题及答案解析
- 2026国家统计局宣威调查队综合岗招聘1人(云南)笔试备考题库及答案解析
- 2026年哈尔滨市第二十中学校招聘临聘教师1笔试备考题库及答案解析
- 2026年鞍山职业技术学院单招综合素质考试备考题库含详细答案解析
- 2026乌鲁木齐市第三十九小学招聘语文教师笔试备考题库及答案解析
- 2026年芜湖臻鑫智镁科技有限公司公开招聘笔试备考试题及答案解析
- 2026年宿州九中教育集团(宿马南校区)教师招聘14人笔试备考试题及答案解析
- Python深度学习入门(从零构建CNN和RNN)
- 小学信息科技课堂中人工智能教育实践研究教学研究课题报告
- 2026北京海淀初三上学期期末数学试卷和答案
- 设备拆除安全培训内容课件
- 麻绳手工创意课件
- 病房急危重症患者抢救流程
- 非遗宋锦课件
- 2023年云南省中考数学真题(原卷版)
- 人工影响天气培训
- 2025年中考数学模拟考试卷(附答案)
- 铁矿球团工程设计规范
评论
0/150
提交评论