版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南洛阳伊川八年级数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各组数不是勾股数的是()A.,, B.,, C.,, D.,,2.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数 B.平均数 C.中位数 D.方差3.已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.m< B.m> C.m≥1 D.m<14.如图,在△ABC中,AB=AC,BC=5,AB=11,AB的垂直平分线DE交AB于点E,交AC于点D,则△BCD的周长是()A.16 B.6 C.27 D.185.点关于轴的对称点的坐标为()A. B. C. D.6.如图,在锐角三角形中,,的平分线交于点,、分别是和上的动点,则的最小值是()A.1 B. C.2 D.7.已知三角形三边长3,4,,则的取值范围是()A. B. C. D.8.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.9.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°10.在同一平面直角坐标系中,直线和直线的位置可能是()A. B.C. D.11.禽流感病毒的半径大约是0.00000045米,它的直径用科学记数法表示为()A.米 B.米 C.米 D.米12.如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了根火柴,并且等边三角形的个数比正六边形的个数多,那么连续搭建的等边三角形的个数是()…………A. B. C. D.以上答案都不对二、填空题(每题4分,共24分)13.在平面直角坐标系中,点关于轴的对称点是__________.14.如图,在△ABC中,∠ACB=81°,DE垂直平分AC,交AB于点D,交AC于点E.若CD=BC,则∠A等于_____度.15.如果的乘积中不含项,则m为__________.16.若方程是一元一次方程,则a的值为__________.17.当代数式的值不大于时,的取值范围是_______________________.18.如图,两地相距千米,甲、乙两人都从地去地,图中和分别表示甲、乙两人所走路程(千米)与时间(小时)之间的关系,下列说法:①乙晚出发小时;②乙出发小时后追上甲;③甲的速度是千米/小时;④乙先到达地.其中正确的是__________.(填序号)三、解答题(共78分)19.(8分)阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.20.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.21.(8分)2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.22.(10分)郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.大桶小桶进价(元/个)185售价(元/个)208(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?23.(10分)(1)用简便方法计算:20202﹣20192(2)化简:[(x﹣y)2+(x+y)(x﹣y)]÷2x24.(10分)如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.25.(12分)如图,在等腰中,AC=AB,∠CAB=90°,E是BC上一点,将E点绕A点逆时针旋转90°到AD,连接DE、CD.(1)求证:;(2)当BC=6,CE=2时,求DE的长.26.学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.(1)求所购买的A、B两种品牌足球的单价是多少元?(2)为响应“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?
参考答案一、选择题(每题4分,共48分)1、C【分析】根据勾股数的定义:有a、b、c三个正整数,满足a2+b2=c2,称为勾股数.由此判定即可.【详解】解:A、32+42=52,能构成勾股数,故选项错误;
B、62+82=102,能构成勾股数,故选项错误
C、42+62≠82,不能构成勾股数,故选项正确;
D、52+122=132,能构成勾股数,故选项错误.
故选:C.【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.2、D【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.3、A【解析】分析:由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.详解:∵点P(−1,y1)、点Q(3,y2)在一次函数y=(2m−1)x+2的图象上,∴当−1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m−1<0,解得故选A.点睛:考查一次函数的性质,,一次函数当时,y随着x的增大而增大,当时,y随着x的增大而减小.4、A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出△BCD的周长=AC+BC,代入数据计算即可得解.【详解】解:∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵AB=11,∴AC=AB=11,∴△BDC的周长=11+5=16,故选:A.【点睛】本题考查了垂直平分线的性质,熟练掌握性质和准确识图是解题的关键.5、A【分析】根据关于轴对称的点的特征:横坐标相同,纵坐标互为相反数即可得出答案.【详解】∵关于轴对称的点横坐标相同,纵坐标互为相反数,∴点关于轴的对称点的坐标为.故选:A.【点睛】本题主要考查关于轴对称的点的特征,掌握关于轴对称的点的特征是解题的关键.6、B【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE,
当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,
∵,∠BAC=45°,此时△ABE为等腰直角三角形,
∴BE=,即BE取最小值为,
∴BM+MN的最小值是.
故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.7、C【分析】根据三角形三边的关系即可得出结论【详解】解:∵三角形的三边长分别是x,3,4,
∴x的取值范围是1<x<1.
故选:C【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.8、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.9、C【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.10、C【分析】根据一次函数的性质,对k的取值分三种情况进行讨论,排除错误选项,即可得到结果.【详解】解:由题意知,分三种情况:当k>2时,y=(k-2)x+k的图象经过第一、二、三象限;y=kx的图象y随x的增大而增大,并且l2比l1倾斜程度大,故B选项错误,C选项正确;当0<k<2时,y=(k-2)x+k的图象经过第一、二、四象限;y=kx的图象y随x的增大而增大,A、D选项错误;当k<0时,y=(k-2)x+k的图象经过第二、三、四象限,y=kx的图象y随x的增大而减小,但l1比l2倾斜程度大.∴直线和直线的位置可能是C.故选:C.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.11、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、C【分析】设搭建了x个正三角形,y个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,根据“搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设搭建了x个正三角形,y个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,依题意,得:,解得:.故答案为:C.【点睛】本题考查了二元一次方程组的应用以及规律型:图形的变化类,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(每题4分,共24分)13、【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:∵点,∴与点P关于x轴对称的点的坐标为,故答案为:.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14、1【分析】先根据垂直平分线的性质得出,再根据等腰三角形的性质、三角形的外角性质可得,最后利用三角形的内角和定理即可得.【详解】垂直平分AC又在中,则解得故答案为:1.【点睛】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,利用等腰三角形的性质和外角的性质求出与的等量关系是解题关键.15、【分析】把式子展开,找到x2项的系数和,令其为1,可求出m的值.【详解】=x3+3mx2-mx-2x2-6mx+2m,又∵的乘积中不含项,∴3m-2=1,∴m=.【点睛】考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为1.16、1【分析】根据一元一次方程的最高次数是1,求出a的值.【详解】解:,.故答案是:1.【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.17、【分析】根据题意,列出一元一次不等式,然后解不等式即可得出结论.【详解】解:由题意可得≤10≤20≤19解得故答案为:.【点睛】此题考查的是解一元一次不等式,掌握不等式的解法是解决此题的关键.18、:①③④【分析】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,乙晚出发1小时,故①正确;∵3-1=2小时,∴乙出发2小时后追上甲,故②错误;∵12÷3=4千米/小时,∴甲的速度是4千米/小时,故③正确;∵相遇后甲还需8÷4=2小时到B地,相遇后乙还需8÷(12÷2)=小时到B地,∴乙先到达B地,故④正确;故答案为:①③④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题(共78分)19、(1)证明见解析(2)证明见解析【解析】1)根据以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,OP是∠MON的平分线,运用SAS判定△AOB≌△AOC即可;
(2)先截取CE=CA,连接DE,根据SAS判定△CAD≌△CED,得出AD=DE,∠A=∠CED=60°,AC=CE,进而得出结论BC=AC+AD;【详解】(1)证明:在△AOB和△AOC中,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.【点睛】本题主要考查了全等三角形的判定与性质、勾股定理以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据线段的和差关系进行推导.解题时注意方程思想的运用.20、∠CMA=35°.【解析】根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.21、高铁的平均速度是300千米/时.【分析】根据高铁的行驶路程是600千米和普通列车的行驶路程是高铁的行驶路程的1.2倍,两数相乘即可得出普通列车的行驶路程;设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短4小时,列出分式方程,然后求解即可【详解】解:根据题意得:
600×1.2=720(千米).
所以,普通列车的行驶路程是720千米;设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:
,
解得:x=120,
经检验x=120是原方程的解,
则高铁的平均速度是120×2.5=300(千米/时).
答:高铁的平均速度是300千米/时.【点睛】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.22、(1)超市购进大桶300个,小桶500个;(2)小桶作为赠品送出50个.【分析】(1)设购进大桶x个,小桶y个,根据题意列出二元一次方程组求解即可;(2)设小桶作为赠品送出m个,由题意列出方程求解即可.【详解】(1)设购进大桶x个,小桶y个,由题意得解之,得答:该超市购进大桶300个,小桶500个;(2)设小桶作为赠品送出m个,由题意得解之,得.答:小桶作为赠品送出50个.【点睛】此题主要考查二元一次方程组的实际应用,解题关键是理解题意,找出关系式.23、(1)4039;(2)x﹣y【分析】(1)利用平方差公式变形为(2020+2019)×(2020﹣2019),再进一步计算可得;(2)先分别利用完全平方公式和平方差公式计算括号内的,再计算除法可得.【详解】解:(1)原式=(2020+2019)×(2020﹣2019)=4039×1=4039;(2)原式.【点睛】本题主要考查了乘法公式的应用,解题的关键是熟练掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式.24、见解析.【分析】(1)由于A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校,则可确定A点位置,然后画出直角坐标系;(2)利用第一象限点的坐标特征写出B点坐标;(3)根据坐标的意义描出点C.【详解】(1)如图;(2)B同学家的坐标是(200,150);(3)如图:故答案为(200,150).【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.25、(1)见解析;(2)2【分析】(1)根据E点绕A点逆时针旋转90°到AD,可得AD=AE,∠DAE=90°,进而可以证明△ABE≌△ACD;(2)结合(1)△ABE≌△ACD,和等腰三角形的性质,可得∠DCE=90°,再根据勾股定理即可求出DE的长.【详解】(1)证明:∵E点绕A点逆时针旋转90°到A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院后勤服务合同规范
- 体育场馆混凝土路面施工合同
- 机械设备租赁服务合同签订要点
- 企事业单位车辆租赁协议
- 信托公司合同
- 展览馆门卫安全协议
- 知识产权风险管理指南
- 传媒科技公司税务申报指南
- 礼拜堂租赁合同
- 招投标中心项目招标问题总结
- 2020-2021学年河南省洛阳市高一上学期期中考试化学试题
- 新疆历史印记课件
- 行政复议法-形考作业3-国开(ZJ)-参考资料
- 江苏省苏州市2023-2024学年七年级上学期期中阳光测评英语试题
- 【招标控制价编制研究文献综述(论文)4800字】
- GB/T 5237.1-2017铝合金建筑型材第1部分:基材
- 完整版:美制螺纹尺寸对照表(牙数、牙高、螺距、小径、中径外径、钻孔)
- EXCEL 支票打印模板
- 城镇污水处理厂污泥日转运联单
- 中药知识文库:药材资料汇编(上集)
- 焦炭塔设计应考虑的几个问题[详细]
评论
0/150
提交评论