2023-2024学年甘肃省靖远二中高三数学第一学期期末质量跟踪监视试题含解析_第1页
2023-2024学年甘肃省靖远二中高三数学第一学期期末质量跟踪监视试题含解析_第2页
2023-2024学年甘肃省靖远二中高三数学第一学期期末质量跟踪监视试题含解析_第3页
2023-2024学年甘肃省靖远二中高三数学第一学期期末质量跟踪监视试题含解析_第4页
2023-2024学年甘肃省靖远二中高三数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年甘肃省靖远二中高三数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.一个几何体的三视图如图所示,则这个几何体的体积为()A. B.C. D.3.的展开式中的常数项为()A.-60 B.240 C.-80 D.1804.函数图象的大致形状是()A. B.C. D.5.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.6.已知集合,,若,则()A. B. C. D.7.已知向量,,则向量与的夹角为()A. B. C. D.8.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线9.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为()A. B. C. D.10.已知,,则()A. B. C.3 D.411.中,点在边上,平分,若,,,,则()A. B. C. D.12.函数的图像大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,,则A的值是______.14.一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_______.15.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)16.已知,分别是椭圆:()的左、右焦点,过左焦点的直线与椭圆交于、两点,且,,则椭圆的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.18.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.19.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.20.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.21.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.22.(10分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论.【详解】根据已知函数其中,的图象过点,,可得,,解得:.再根据五点法作图可得,可得:,可得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B.【点睛】本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题.2、B【解析】

还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.3、D【解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.4、B【解析】

判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.5、A【解析】

由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.6、A【解析】

由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.7、C【解析】

求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.8、C【解析】

充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.9、D【解析】

根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.【详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【点睛】考查三角函数图象的变换规律以及其有关性质,基础题.10、A【解析】

根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.11、B【解析】

由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.12、A【解析】

根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据正弦定理,由可得,由可得,将代入求解即得.【详解】,,即,,,则,,,,则.故答案为:【点睛】本题考查正弦定理和二倍角的正弦公式,是基础题.14、【解析】

利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是.次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.15、【解析】

根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.16、【解析】

设,则,,由知,,,作,垂足为C,则C为的中点,在和中分别求出,进而求出的关系式,即可求出椭圆的离心率.【详解】如图,设,则,,由椭圆定义知,,因为,所以,,作,垂足为C,则C为的中点,在中,因为,所以,在中,由余弦定理可得,,即,解得,所以椭圆的离心率为.故答案为:【点睛】本题考查椭圆的离心率和直线与椭圆的位置关系;利用椭圆的定义,结合焦点三角形和余弦定理是求解本题的关键;属于中档题、常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点在以为直径的圆上【解析】

(1)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的标准方程;(2)设点,,则,,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上.【详解】(1)由题意可知,,解得,椭圆的标准方程为:.(2)设点,,则,,直线的斜率为,直线的方程为:,令得,,点的坐标为,,点的坐标为,,,,又点,在椭圆上,,,,点在以为直径的圆上.【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档题.18、(1);(2)【解析】

(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.19、(1);(2).【解析】

(1)由l参数方程与椭圆方程联立可得A、B两点参数和,再利用M点的参数为A、B两点参数和的一半即可求M的坐标;(2)利用直线参数方程的几何意义得到,再利用计算即可,但要注意判别式还要大于0.【详解】(1)由已知,曲线的参数方程为(为参数),其普通方程为,当时,将(为参数)代入得,设直线l上A、B两点所对应的参数为,中点M所对应的参数为,则,所以的坐标为;(2)将代入得,则,因为即,所以,故,由得,所以.【点睛】本题考查了伸缩变换、参数方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道中档题.20、(1)(2)【解析】

(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】(1),且,,依次成等比数列,,即:,,,,,;(2),.【点睛】本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.21、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.22、(1).(2)1【解析】

(1)先根据题意建立空间直角坐标系,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论