版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省阜阳太和县联考数学八上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知二元一次方程组,则的值为()A.2 B. C.4 D.2.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5 C.(﹣2x2)4=16x6 D.(x+3y)(x﹣3y)=x2﹣3y23.如图,数轴上点N表示的数可能是()A. B. C. D.4.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是5.下列代数式中,分式有______个,,,,,,,,A.5 B.4 C.3 D.26.若(b≠0),则=()A.0 B. C.0或 D.1或27.已知图中的两个三角形全等,则的度数是()A.72° B.60° C.58° D.50°8.下列运算中,正确的是()A.(a2)3=a5 B.3a2÷2a=a C.a2•a4=a6 D.(2a)2=2a29.如图,D是线段AC、AB的垂直平分线的交点,若,,则的大小是A. B. C. D.10.把分式方程化成整式方程,去分母后正确的是()A. B.C. D.11.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+212.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,-3)关于y轴对称的点的坐标是(-2,-3);④两条直线被第三条直线所截,内错角相等.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.有一个数值转换器,原理如图:当输入x为81时,输出的y的值是_____.14.比较大小:-______-.15.如图(1)是长方形纸带,,将纸带沿折叠图(2)形状,则等于________度.16.9的平方根是_________.17.已知,则的值等于________.18.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.三、解答题(共78分)19.(8分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.20.(8分)因式分解:(1)(2)21.(8分)如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1________B1________C1________(3)求△ABC的面积.22.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.(10分)定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{1,5,5}=1.(1)根据题意填空:min=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.24.(10分)如图,在平面直角坐标系中,直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),直线交l₂交y轴于点B(0,﹣5).(1)求直线l₂的解析式;(2)将△OAB沿直线l₂翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.25.(12分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.26.如图,在四边形中,,为的中点,连接,且平分,延长交的延长线于点.(1)求证:;(2)求证:;(3)求证:是的平分线;(4)探究和的面积间的数量关系,并写出探究过程.
参考答案一、选择题(每题4分,共48分)1、D【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【详解】解:
②−①×2得,6y=9,解得,
把代入①得,,解得,
∴,
故选:D.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、B【解析】试题分析:A、根据合并同类项计算,原式=2;B、同底数幂的乘法,底数不变,指数相加,则计算正确;C、幂的乘方法则,底数不变,指数相乘,原式=16;D、根据平方差公式进行计算,原式==.考点:(1)同底数幂的计算;(2)平方差公式3、C【分析】根据题意可得2<N<3,即<N<,在选项中选出符合条件的即可.【详解】解:∵N在2和3之间,∴2<N<3,∴<N<,∵,,,∴排除A,B,D选项,∵,故选C.【点睛】本题主要考查无理数的估算,在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.4、C【解析】试题解析:被开方数含分母,不是最简二次根式;被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选C.5、B【分析】根据判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,对各选项判断即可.【详解】解:解:根据分式的定义,可知分式有:,,,,共4个,
故选:B.【点睛】本题考查分式的定义,能熟记分式的定义的内容是解题的关键,注意:分式的分母中含有字母.6、C【详解】解:∵,∴a(a-b)=0,∴a=0,b=a.当a=0时,原式=0;当b=a时,原式=故选C7、D【分析】根据全等三角形的性质中对应角相等,可得此组对应角为线段a和c的夹角,由此可知=50°即可.【详解】∵两个三角形全等,∴∠α=50°.故选D.【点睛】此题考查全等三角形的性质,学生不仅需要掌握全等三角形的性质,而且要准确识别图形,确定出对应角是解题的关键.8、C【分析】分别根据同底数幂的乘法、除法运算法则以及幂的乘方运算法则分别求出即可.【详解】解:A、(a2)3=a6,故此选项错误;B、3a2÷2a=a,故此选项错误;C、此选项正确;D、(2a)2=4a2,故此选项错误;故选C.9、A【解析】利用线段的垂直平分线的性质可以得到相等的线段,进而可以得到相等的角,然后利用题目中的已知条件求解即可.【详解】解:是线段AC、AB的垂直平分线的交点,
,
,,
,,
,
,
故选A.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是根据线段的垂直平分线得到相等的线段.10、B【分析】分式方程两边乘以最简公分母去分母即可得到结果.【详解】分式方程去分母得:,
故选:B.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.11、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.12、A【分析】根据命题的真假性进行判断即可得解.【详解】①数轴上的点和实数是一一对应的,故原命题错误,是假命题;②中,已知两边长分别是3和4,则第三条边长为5或,故原命题错误,是假命题;③在平面直角坐标系中点关于y轴对称的点的坐标是,故原命题正确,是真命题;④两条平行直线被第三条直线所截,内错角相等,故原命题题错误,是假命题.所以真命题只有1个,故选:A.【点睛】本题主要考查了相关命题真假性的判断,熟练掌握相关命题涉及的知识点是解决本题的关键.二、填空题(每题4分,共24分)13、【分析】将x的值代入数值转化器计算即可得到结果.【详解】将x=81代入得:=9,将x=9代入得:=3,再将x=3代入得则输出y的值为.14、>【解析】,.15、1【分析】由题意知∠DEF=∠EFB=20°,再根据三角形的外角的性质即可的解.【详解】∵AD∥BC,∴∠DEF=∠EFB=20°,∴.故答案为1.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.16、±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17、-5【分析】由得到,整体代入求值即可得到答案.【详解】解:,故答案为:【点睛】本题考查的是分式的求值,掌握整体代入方法求分式的值是解题的关键.18、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.三、解答题(共78分)19、(1)∠ECF=45°;(2)BC=,和△ABC的面积为.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC=,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC=AB×CE=.【详解】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴再Rt△BCE中,BC=设AE=x,则AB=x+5,∵在Rt△ACE中,AC2=AE2+CE2,在Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=∴S△ABC=AB×CE=(+5)×4=.【点睛】本题主要考查折叠的性质及勾股定理的应用,掌握折叠的性质及勾股定理是解题的关键.20、(1);(2)【分析】(1)通过提取公因式法和平方差公式,即可得到答案;(2)通过提取公因式法和完全平方公式,即可得到答案.【详解】(1)原式;(2)原式.【点睛】本题主要考查分解因式,掌握提取公因式法和公式法因式分解,是解题的关键.21、(1)如图:(2)(1,-2),(3,-1),(-2,1)(3)4.5【分析】分别作出点A,B,C关于x轴的对称点,再顺次连接起来,即可;根据所作的图形,即可;利用割补法即可求解.【详解】(1)如图:∴△A1B1C1即为所求;(2)由上图可知:A1,B1,C1的坐标分别为:(1,-2),(3,-1),(-2,1)(3)【点睛】根据题意画出对称点,然后作出对称三角形,注意,在方格纸中求三角形的面积,一般要用割补法进行求解,比较方便.22、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.23、(1)3(2)见解析(3)m≤2【分析】(1)先求出的值,再根据运算规则即可得出答案;(2)先计算交点坐标,画图象即可得出答案;(3)由(2)中的图象,与函数y=﹣x+m的图象有交点则有解,据此即可求解.【详解】(1)∵=3,∴min=3;故答案为3;(2)由图象得:y=;(3)当y=2时,﹣3x+11=2,x=3,∴A(3,2),当y=﹣x+m过点A时,则﹣3+m=2,m=2,如图所示:∴常数m的取值范围是m≤2.【点睛】此题考查了一次函数和一次方程的应用,解题的关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.24、(2)直线l₂的解析式为y=2x﹣5;(2)证明见解析;(3)P2(0,﹣9),P2(7,﹣6),P3(,).【分析】(2)解方程得到A(2,3),待定系数法即可得到结论;
(2)根据勾股定理得到OA=5,根据等腰三角形的性质得到∠OAB=∠OBA,根据折叠的性质得到∠OAB=∠CAB,于是得到结论;
(3)如图,过C作CM⊥OB于M,求得CM=OD=2,得到C(2,-2),过P2作P2N⊥y轴于N,根据全等三角形的判定和性质定理即可得到结论.【详解】(2)∵直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),∴A(2,3).∵直线交l₂交y轴于点B(0,﹣5),∴y=kx﹣5,把A(2,3)代入得:3=2k﹣5,∴k=2,∴直线l₂的解析式为y=2x﹣5;(2)∵OA5,∴OA=OB,∴∠OAB=∠OBA.∵将△OAB沿直线l₂翻折得到△CAB,∴∠OAB=∠CAB,∴∠OBA=∠CAB,∴AC∥OB;(3)如图,过C作CM⊥OB于M,则CM=OD=2.∵BC=OB=5,∴BM=3,∴OB=2,∴C(2,﹣2),过P2作P2N⊥y轴于N.∵△BCP是等腰直角三角形,∴∠CBP2=90°,∴∠MCB=∠NBP2.∵BC=BP2,∴△BCM≌△P2BN(AAS),∴BN=CM=2,∴P2(0,﹣9);同理可得:P2(7,﹣6),P3(,).【点睛】本题考查了一次函数的综合题,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,正确的求得P点的坐标是解题的关键.25、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44811-2024物联网数据质量评价方法
- 2024年度年福建省高校教师资格证之高等教育学题库检测试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规综合检测试卷B卷含答案
- 运用逻辑思维
- 2024专业采购协议模板
- 2024新水电安装合作协议样本
- 2024年钢筋工程承包协议范本
- 2024年劳动协议固定期限本参考
- 2024年中央空调系统工程协议
- 2024年汽车信贷保证协议模板定制
- 【类文阅读】25.古人谈读书(试题)五年级语文上册 部编版(含答案、解析)
- 新疆维吾尔自治区吐鲁番市2023-2024学年九年级上学期期中数学试题
- 小学信息技术《认识“画图”》说课稿
- 鲁教版七年级上册地理知识点汇总
- 新课标-人教版数学六年级上册第四单元《比》单元教材解读
- 全国高中青年数学教师优质课大赛一等奖《函数的单调性》课件
- 部编版道德与法治 四年级上册 单元作业设计《为父母分担》
- 核酸的生物合成 完整版
- 第一章-教育及其本质
- 天然气巡检记录表
- 食品进货台账制度范本(3篇)
评论
0/150
提交评论