2024届上海市娄山中学中考五模数学试题含解析_第1页
2024届上海市娄山中学中考五模数学试题含解析_第2页
2024届上海市娄山中学中考五模数学试题含解析_第3页
2024届上海市娄山中学中考五模数学试题含解析_第4页
2024届上海市娄山中学中考五模数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年上海市娄山中学中考五模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列性质中菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.既是轴对称图形又是中心对称图形2.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二 B.二、三 C.三、四 D.一、四3.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a24.下列算式的运算结果正确的是()A.m3•m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m25.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或46.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()A. B. C. D.7.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)8.如图的立体图形,从左面看可能是()A. B.C. D.9.如图,已知点P是双曲线y=上的一个动点,连结OP,若将线段OP绕点O逆时针旋转90°得到线段OQ,则经过点Q的双曲线的表达式为()A.y= B.y=﹣ C.y= D.y=﹣10.如图,将矩形ABCD沿对角线BD折叠,使C落在C'处,BC'交AD于E,则下列结论不一定成立的是()A.AD=BC' B.∠EBD=∠EDBC.ΔABE∼ΔCBD D.sin11.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A. B. C. D.12.|–|的倒数是()A.–2 B.– C. D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.14.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.15.|-3|=_________;16.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.17.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.18.函数y=1x-1的自变量x的取值范围是三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?20.(6分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.21.(6分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.22.(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.23.(8分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.24.(10分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.25.(10分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?26.(12分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:①教师讲,学生听②教师让学生自己做③教师引导学生画图发现规律④教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图(1)请将条形统计图补充完整;(2)计算扇形统计图中方法③的圆心角的度数是;(3)八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?27.(12分)如图,一次函数y=kx+b与反比例函数y=m求反比例函数和一次函数的解析式;直接写出当x>0时,kx+b<m

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】

根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【题目详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质2、D【解题分析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.3、C【解题分析】

解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=故选C4、B【解题分析】

直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【题目详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【题目点拨】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.5、C【解题分析】试题解析:∵x=-2是关于x的一元二次方程的一个根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故选A.点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6、C【解题分析】

主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.【题目详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选C.【题目点拨】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.7、D【解题分析】

把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【题目详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【题目点拨】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).8、A【解题分析】

根据三视图的性质即可解题.【题目详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【题目点拨】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.9、D【解题分析】

过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.【题目详解】过P,Q分别作PM⊥x轴,QN⊥x轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋转可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,设P(a,b),则有Q(-b,a),由点P在y=上,得到ab=3,可得-ab=-3,则点Q在y=-上.故选D.【题目点拨】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.10、C【解题分析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=AEBE∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=AEED由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.11、B【解题分析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解:∵EF∥AB,∴△CEF∽△CAB,∴,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.12、D【解题分析】

根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.【题目详解】|−|=,的倒数是2;∴|−|的倒数是2,故选D.【题目点拨】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解题分析】

如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=×42=4,再证明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解决问题.【题目详解】解:如图,连接BD.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等边三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S阴=4-=3,故答案为3.【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14、20cm.【解题分析】

将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【题目详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【题目点拨】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.15、1【解题分析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-1|=1.故答案为1.16、﹣2【解题分析】∵反比例函数的图象过点A(m,3),∴,解得.17、【解题分析】

由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【题目详解】∵六边形ABCDEF是正六边形,

∴∠AOB=60°,

∴△OAB是等边三角形,OA=OB=AB=2,

设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

∴∴S阴影=S△OAB-S扇形OMN=故答案为【题目点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.18、x>1【解题分析】依题意可得x-1>0,解得x>1,所以函数的自变量x的取值范围是x>1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析(2)A-国学诵读(3)360人【解题分析】

(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.【题目详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×=360(人)【题目点拨】此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解.20、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.【解题分析】

(1)配方法解;(1)因式分解法解.【题目详解】(1)x1﹣1x﹣1=2,x1﹣1x+1=1+1,(x﹣1)1=3,x﹣1=,x=1,x1=1,x1=1﹣,(1)(x+1)1=4(x﹣1)1.(x+1)1﹣4(x﹣1)1=2.(x+1)1﹣[1(x﹣1)]1=2.(x+1)1﹣(1x﹣1)1=2.(x+1﹣1x+1)(x+1+1x﹣1)=2.(﹣x+3)(3x﹣1)=2.x1=3,x1=.【题目点拨】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.21、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解题分析】

(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【题目详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【题目点拨】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.22、(1)见解析;(2)4.1【解题分析】

试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.23、(1)=x2+7+(2)见解析【解题分析】

(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【题目详解】(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;当x=0时,取得最小值0,∴当x=0时,x2+7+最小值为1,即原式的最小值为1.24、(1)A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解题分析】

(1)令y=0,得到关于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t的函数关系式,继而可求出△ACP面积的最大值.【题目详解】(1)解:设y=0,则0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴解得:∴AC解析式为y=x+4.设P(t,﹣t2﹣t+4)则D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【题目点拨】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.25、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.【解题分析】

(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【题目详解】(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(2)列表得:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论