上海市黄浦区名校2024届中考考前最后一卷数学试卷含解析_第1页
上海市黄浦区名校2024届中考考前最后一卷数学试卷含解析_第2页
上海市黄浦区名校2024届中考考前最后一卷数学试卷含解析_第3页
上海市黄浦区名校2024届中考考前最后一卷数学试卷含解析_第4页
上海市黄浦区名校2024届中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市黄浦区名校2024届中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟2.如图所示的几何体,它的左视图是()A. B. C. D.3.如图,⊙O是等边△ABC的外接圆,其半径为3,图中阴影部分的面积是()A.π B. C.2π D.3π4.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40° B.60° C.80° D.100°5.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(

)A.9分B.8分C.7分D.6分6.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a67.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是()A.1 B.2 C.3 D.49.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为210.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.10二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.12.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.13.分解因式:x3-9x14.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.15.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)16.因式分解:.17.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.三、解答题(共7小题,满分69分)18.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.(1)直接写出关于原点的中心对称图形各顶点坐标:________________________;(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.19.(5分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.20.(8分)已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出:S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1:若存在直接写出Q点坐标。若不存在请说明理由。21.(10分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.22.(10分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)23.(12分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.24.(14分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y的最小值(保留一位小数),此时点P在图1中的什么位置.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.2、A【解题分析】

从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【题目详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,

故选:A.【题目点拨】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.3、D【解题分析】

根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【题目详解】∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π.故选D.【题目点拨】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.4、D【解题分析】

根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5、C【解题分析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、D【解题分析】

根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【题目详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【题目点拨】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.7、A【解题分析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A.考点:1、计算器—数的开方;2、实数与数轴8、B【解题分析】

由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.【题目详解】解:∵图象开口向下,∴a<0,∵对称轴为直线x=2,∴>0,∴b>0,∵与y轴的交点在x轴的下方,∴c<0,∴abc>0,故①错误.∵对称轴为直线x=2,∴=2,∴a=,∵由图象可知当x=1时,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②错误.∵由图象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正确.∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,∴方程有一个根为x=-c,由③可知-c=OA,而当x=OA是方程的根,∴x=-c是方程的根,即假设成立,故④正确.综上可知正确的结论有三个:③④.故选B.【题目点拨】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.9、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.10、C【解题分析】

由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【题目详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【题目点拨】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】

根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.【题目详解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.故答案为1.【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.12、【解题分析】

根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.【题目详解】数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案为+1.【题目点拨】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.13、x【解题分析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x214、1.【解题分析】

根据三角形的性质求解即可。【题目详解】解:在Rt△ABC中,D为AB的中点,根据直角三角形斜边的中线等于斜边的一半可得:AD=BD=CD,因为D为AB的中点,BE//DC,所以DF是△ABE的中位线,BE=2DF=12所以DF==6,设CD=x,由CF=CD,则DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【题目点拨】本题主要考查三角形基本概念,综合运用三角形的知识可得答案。15、①②③【解题分析】试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正确;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正确;△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;∵BE>EC,AE=BE,∴AE>EC,∴点E不是AC的中点,④错误,故答案为①②③.考点:线段垂直平分线的性质;等腰三角形的判定与性质.16、;【解题分析】

根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【题目详解】x2﹣x﹣12=(x﹣4)(x+3).故答案为(x﹣4)(x+3).17、1【解题分析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.三、解答题(共7小题,满分69分)18、(1),,;(2)作图见解析,面积,.【解题分析】

(1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、、的坐标;(2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可.再利用弧长公式求出点C所经过的路径长.【题目详解】解:(1)由在平面直角坐标系中的位置可得:,,,∵与关于原点对称,∴,,(2)如图所示,即为所求,∵,,∴,∴,∵,∴在旋转过程中所扫过的面积:点所经过的路径:.【题目点拨】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.19、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.【解题分析】

(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;

(2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;

②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;

③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;【题目详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,

故答案为C.

(2)①如图3-1中,作NH⊥x轴于H.

∵N(,-),

∴tan∠NOH=,

∴∠NOH=30°,

∠MON=90°+30°=120°,

∵点D是线段MN关于点O的关联点,

∴∠MDN+∠MON=180°,

∴∠MDN=60°.

故答案为60°.

②如图3-2中,结论:△MNE是等边三角形.

理由:作EK⊥x轴于K.

∵E(,1),

∴tan∠EOK=,

∴∠EOK=30°,

∴∠MOE=60°,

∵∠MON+∠MEN=180°,

∴M、O、N、E四点共圆,

∴∠MNE=∠MOE=60°,

∵∠MEN=60°,

∴∠MEN=∠MNE=∠NME=60°,

∴△MNE是等边三角形.③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,

易知E(,1),

∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),

观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.【题目点拨】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.20、(1);(2);(3)【解题分析】

(1)联立两直线解析式,求出交点P坐标即可;(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.【题目详解】解:(1)联立得:,解得:;∴P的坐标为;(2)分两种情况考虑:当时,由F坐标为(a,0),得到OF=a,把E横坐标为a,代入得:即此时当时,重合的面积就是梯形面积,F点的横坐标为a,所以E点纵坐标为M点横坐标为:-3a+12,∴所以;(3)令中的y=0,解得:x=4,则A的坐标为(4,0)则AP=,则PM=2又∵OP=∴点P向左平移3个单位在向下平移可以得到M1点P向右平移3个单位在向上平移可以得到M2∴A向左平移3个单位在向下平移可以得到Q1(1,-)A向右平移3个单位在向上平移可以得到Q1(7,)所以,存在Q点,且坐标是【题目点拨】本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)见解析;(2)见解析.【解题分析】

(1)由AD∥BC得∠DAC=∠BCA,又∵AC·CE=AD·BC∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)由题中条件易证得△ABF∽△DAC∴,又∵AB=DC,∴【题目详解】证明:(1)∵AD∥BC,∴∠DAC=∠BCA,∵AC·CE=AD·BC,∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论