工业蒸汽锅炉热力计算中英文对照外文翻译文献_第1页
工业蒸汽锅炉热力计算中英文对照外文翻译文献_第2页
工业蒸汽锅炉热力计算中英文对照外文翻译文献_第3页
工业蒸汽锅炉热力计算中英文对照外文翻译文献_第4页
工业蒸汽锅炉热力计算中英文对照外文翻译文献_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文对照翻译配煤方法对燃煤锅炉中粉尘和氮氧化物排放的影响亮点:说明了混合方法对粉尘和氮氧化物排放有很大影响。说明了粉尘主要产生于炉的中间燃烧器。说明了炉内混合方法可以排放最少量的氮氧化物和粉尘。摘要:本文介绍了的混合方法对于500MW切向燃烧煤粉锅炉燃烧特性和氮氧化物排放的影响的数值模拟。在同一个记重标准上模拟混合了60%沥青的煤和混合了40%亚烟煤的煤的炉内和炉外混合。模拟显示了混合方法对粉尘排放有很大影响,但对氮氧化物排放的影响不大。在下层燃烧器中燃烧烟煤和在上层燃烧器中燃烧亚烟煤的炉内混合方法排放的粉尘最少。两种混合方法中的粉尘均主要来自于炉内的中层燃烧器。500MW燃煤电厂的现场试验表明炉内混合方法相比炉外混合方法可以大大减少氮氧化物和粉尘的排放。关键字:粉尘氮氧化物煤混合锅炉点火损失\o"加入单词本"一、说明近年来,许多国家的燃煤电厂在燃烧混合不同类型的煤种正变得越来越普遍。燃煤电厂利用混合煤有许多优势。煤混合由于许多不同的原因,包括:节约成本,减少SO2的排放,扩大优质煤的供应限制,提高燃料灵活性,控制煤炭的矿物含量,提供更好的燃烧,帮助解决现有问题,等[1]。但是,混合燃烧也可能在锅炉运行中产生意想不到的问题,比如效率、腐蚀、侵蚀,火焰稳定,结渣,污垢,吸附热炉等等。在发电厂中,不同类型的煤可以在料箱,储煤器,输送带中混合,煤层堆积在一起按照所需的成分给出理想的混合比例。有时,不同煤种堆积在单独的料箱,然后按照预定比例混合再使用填料器从每个料箱中输出。料箱中待掺合煤按照要求的比例添加,不同煤种顺序添加到储煤器中。在输送带上混合时,两种或更多种不同的煤在移动的皮带输送机上按体积或重量比例混合。不同料箱的煤通过改变它们排出到皮带输送机上的速度进行混合。通过改变单独的进料器的煤炭传递到输送机上的速度从而得到共混物的理想比例,然后在送到到原煤斗[2]。按照Ikeda和Lee等人的定义,这三个混合方法可归类为炉外混合方法[3-5]。在该方法中,不同类型的煤先被混合在一起后,同时喷入炉内。这种方法在发电厂是很常见的,因为两个或两个以上的煤可方便融入了料箱,储煤器或在上述传送带。这有时被称为线混合或原煤斗混合方法。在炉内混合方法中各煤没有预先混合,而是从单独的燃烧器喷入锅炉。这种方法在电厂不受欢迎,因为在煤仓分开运送和分发两种煤很困难。关于混合煤的燃烧,排放和粉尘特性已经出现了[4-11]的许多实验室研究及关于中试炉[12-14],和满量程电站锅炉[15-21]的研究。然而,只有少数的研究发现在其中混合方法对于燃烧效率和污染物排放的的影响[3-5]。Ikeda等人通过试点炉三阶段燃烧器(煤燃烧速度:0.3吨/日)调查了粉煤灰炉内混合方法对NOx排放和未燃碳的影响[3]。Lee等人通过沉降炉计算和实验研究了混合方法对NOx和未燃碳的影响[4]和[5]。但是,具有满量程电站锅炉的研究却一直没有找到。本论文描述了在500兆瓦切向燃煤锅炉中混合方法对燃烧特性和NOx排放影响的数值研究。在CFD模拟中用60%沥青和40%亚烟煤的以重量为基础的共混物对三例不同的混合方法进行了研究。粉尘和氮氧化物排放是目前的CFD模拟的重点工作,另外对一氧化碳,氧气和在锅炉中的烟气的温度分布也进行了研究。最后,在500兆瓦的燃煤锅炉炉内和外炉混合方法的试验中,分别对粉尘和NOx排放数据评论。二、模拟

2.1500MW四角切圆燃煤锅炉

目前500兆瓦的燃煤锅炉组由一个切向燃煤炉,超临界,一次通过,一次中间再热锅炉,换热器,如过热器(SH),再热器(RH),和燃烧器口组成。安排示于图1。节能器安装在锅炉的后部通道。锅炉的高度为约86.3米,截面宽度和炉的深度均为16.5米[22]。图1500兆瓦切向锅炉的结构示意图燃烧器和二次空气风口用同心燃烧系统一起,详细结构图2中给出。该炉有六个燃烧嘴指定为燃烧器集合A到F。每个燃烧器组由浓燃烧器的燃料丰富和弱燃烧器的燃料贫状态,两者具有不同的燃料--空气比。煤燃烧器低氮燃烧器被称为污染最小(PM)燃烧器[22]。二次空气通过辅助由底部和空气风口供给到炉内。燃烧器组安装在四个角,所以粉煤与一次空气和二次空气是从四角喷入炉中,以形成一个圆圈在炉中心,即所谓的耐火球而向顺时针方向旋转,如图2所示。\o"Full-sizeimage(53K)"

图2燃烧器和CCOFA端口的安排以上是在F组的燃烧器,四个角在每个端口都安装了CCOFA执行空气分级低NOx技术。该油燃烧器只在锅炉启动时使用,安装与燃烧器A和B之间,以及两个油燃烧器C及D和E和F之间使用。所有燃烧器和二次空气风口包括CCOFA可以调整其垂直喷射角(倾斜角)为±30°的范围内。它用于在满负荷条件下(500兆瓦),正常运行40个燃烧器A的到E燃烧嘴的情况,以及用于紧急操作的F组燃烧器或定期维护磨煤机。模拟在本研究中,通过使用REI(国际反应工程)开发的冰川CFD软件。此代码已被广泛用于模拟在燃煤电站锅炉中发生的物理和化学过程。由于煤炭燃烧和污染物形成在代码中特别强调,所以它在湍流两相混合,辐射和对流的传热,煤颗粒脱挥发分,焦炭氧化,气相燃烧和NOx的形成的影响中占很大的比重。在这里,氮氧化物是由后处理器的计算预测而得。计算包括完整的质量,动量计算和天然气和煤炭颗粒以及湍流流体流,化学反应,并辐射和对流热传递之间的充分耦合之间的能量耦合。冰川代码在电站锅炉煤燃烧模型的比较详细​​的说明在其他地方给出[23-25]。总网格对于本500兆瓦的切线方向燃煤锅炉由120万六面体单元组成,这足以让一个工程解决方案[23],[26]。计算域被限制在炉内从料斗到对流通道的范围,其中主反应和热传递发生的上游,因此锅炉的后部通道省略在本网格生成中(参见图1)。所有燃烧器和二次空气风口中的计算网格生成如图2所示。在上部炉中过热器(SH)和再热器(RH)被视为具有厚度和热吸附的简化墙壁。模拟进行了三种情况下的炉内和外炉混合方法。在所述外炉混合方法的情况下,两种煤烧嘴之前混合被同时喷入炉内。对于在炉中的混合方法中,两种煤分别从不同的燃烧器喷入炉中而不事先混合。仿真用到了带有沥青(Moorvale)和次烟煤(Rotosouth)煤的,它们的性质在表1中给出。在CFD计算,煤炭液化作用被Ubhayakar等人用两个并行模型建模[27]。脱挥发分反应由下列六个参数来定义:Y1和Y2(质量的化学计量系数),A1和A2(脱挥发分率指前因子),E1和E2(脱挥发分的活化能)。对于参数相同的值,被普遍用于带有沥青和次烟煤的煤的分析[23-24],如表2中给出的。焦炭氧化速率和燃烧行为是由全球三大动力学参数定义:AC(指前因子),EC(活化能)和n(反应级数)。对于两种煤在本模拟中所用的动力学参数的各个值示于表2[26]。CoalMoorvaleRotosouth(bituminous)(subbituminous)Proximateanalysis(wt.%,

aair-dry)Moisture9.4814.3Volatile15.0541.67Fixedcarbon62.7741.6Ash12.72.43Ultimateanalysis(wt.%,air-dry)Carbon73.6867.42Hydrogen3.864.93Oxygen6.6223.86Nitrogen1.60.85Sulphur0.210.1Ash14.032.84Heatingvalue(MJ/kg,as-received)27.2921.53表1在本研究中所用的煤的性质CoalMoorvaleRotosouth(bituminous)(subbituminous)DevolatilizationY10.40.4Y20.80.8A1

(s-1)375,000375,000A2

(s-1)1.46E+131.46E+13E1

(kJ/mol)7474E1

(kJ/mol)251251Charoxidationn11Ac(m/K

s)10.49.4Ec(kJ/mol)97.693.4表2挥发化作用和焦炭氧化动力学参数表三种情况下,不同的混合方法,示于表3中。情况S-1下的烟煤被指定提供给A,B和C燃烧器,而亚烟煤到D和E组。情况S-2被定义为外炉混合方法,使2煤的混有60%的烟煤和次烟煤的40%按重量计的比率,并提供给A至E的燃烧器同时进行设置。对于情况S-3,次烟煤提供给A和B燃烧器而烟煤到C,D和E组。情况S-1和3被归类为在炉内混合方法。CoalsuppliedCaseS-1CaseS-2CaseS-3Fburnerset–––EburnersetRotosouthBlendedcoalaMoorvaleDburnersetRotosouthBlendedcoalMoorvaleCburnersetMoorvaleBlendedcoalMoorvaleBburnersetMoorvaleBlendedcoalRotosouthAburnersetMoorvaleBlendedcoalRotosouthInputdataCaseS-1,2and3Overallstoichiometry1.082Burnertiltangle(°)0Coalflowrate(ton/h)202Primaryairflowrate(ton/h)419Secondaryairflowrate(ton/h)AtE&Fburnersets233AtC&Dburnersets308AtA&Bburnersets308CCOFAairflowrate(ton/h)403Crotchairflowrate(ton/h)94PredictedresultsatmodelexitCaseS-1CaseS-2CaseS-3Carboninash(wt.%)1.653.004.64O2

(%,molarfraction)2.382.542.35CO(%)0.210.340.36Averagedgastemperature(°C)147114841485NO(ppm)106109110表3输入数据和预测结果该模型输入和模拟了这三种情况的一些结果也列于表3。煤和空气流动的相同量被用于所有三种情况。在每个燃烧器组从A到E,煤和空气流速均匀分布。F组燃烧器没有煤流,但最小气流被供给到保护燃烧器和二次空气风口过热。其中弱和浓燃烧的煤流率由制造商的确定。结果与讨论所计算的LOI(点火损失),CO,O2,NOx的浓度和在模型出口气体温度列于表3。仿真结果表明,粉尘从4.64%至1.65%大量减少与混合的方法有关。另一方面,氮氧化物浓度在所有三种情况下的值相近。对于CO浓度,氧气和气体温度,三种情况之间没有明显的倾向。混合方法对燃烧效率和污染物形成的的具体影响将在下面讨论点火损失,一氧化碳,氧气,氮氧化物和气体温度在炉内分布中进一步讨论。LOI(点火损失)对于情况S-1,2和3中的点火失量,即在在模型中退出时粉尘的值分别为是1.65%,3.0%和4.64%。因此,应该注意两种煤的混合是一个直接影响锅炉效率重要因素。最大减少量发生在情况S-1,随后为S-2和3(见表3)。通常,烟煤比次烟煤具有较少的挥发物和更多的固定碳,因此它为完全燃烧需要更多的停留时间。次烟煤中更多的挥发物的燃烧导致氧气在炉内比烟煤更快耗尽。总的来说,烟煤与次烟煤相比就必须要有较长的停留时间,所以对于他在下部燃烧器的燃烧适宜选择炉内混合方法。对于情况S-1,提供给燃烧器组A,B和C的烟煤具有相对长的停留时间在炉中进行焚烧。而在情况S-3中,提供给上部炉(燃烧器套C,D和E)的烟煤却没有足够的时间来完全燃烧。这些方面可以解释粉尘在S-1中的减少及在S-3中的增加。在高氧不足型的环境,可以形成在S-3中次烟煤在较低的燃烧区域中的燃烧,这可能会导致烟煤在上部燃烧区的燃烧效率低下。反过来,在比起其他情况S-3中的粉尘排放量最高。气体温度似乎是影响碳的灰分的量的另一个因素。据报告,较高的气体温度场会促进煤颗粒的燃烧速度[3]。停留时间和气体温度对点火损失的影响已经在Ikedaetal.等人的试验研究中解决[3]。他们报告说,在炉内混合方法供给烟煤到下部的燃烧器中粉尘的减少约是外炉法的20%。该混合方法对应情况S-1。在供给烟煤的燃烧器上(在本研究案例S-3)的情况下,粉尘排量增多,这与目前Ikeda等人的模拟结果相符合。原因是由于在较低的燃烧器的燃烧烟煤时会有较长的停留时间和更高的温度。这个由Lee等人完成的研究还讨论了烟煤,亚烟煤混合燃烧反应温度​​和氧气缺乏对点火损失的重要影响[5]。在三个情况下对粉尘的影响归纳在图3。对于这三种情况下,粉尘主要来自燃烧器设置C和D。燃烧器B是对情况S-3的一个补充。情况S-2显示,粉尘主要来自燃烧器设置C和D,而对于情况S-1在C组弱燃烧器和D组强燃烧器具有粉尘的来源。除了燃烧器对的粉尘的影响,我们也对碳粒度进行了分析。发现者关于尺寸效应这一信息提供了独特的见解以及确定尽量减少灰渣含碳量策略。图4代表灰颗粒尺寸导致的粉尘。在模拟中使用的煤的粒度分布(重量%)在图4中给出。对于这三种情况下,较大粒级的煤颗粒极大地影响粉尘的形成,符合预期。对于直径小于50微米的颗粒,粉尘的含量很少。随着颗粒直径的增加,粉尘排放量急剧的增加,这是情况S-2,甚至是S-3的到了有力的证明。图4描述了较大的颗粒对粉尘排放的影响,并得出减少了较大的炭颗粒可能是一个减少粉尘的直接方法。在一般情况下,粉碎次烟煤的粒径比烟煤更小,所以需要在炉中燃烧烟煤的停留时间较长。在本研究中,情况S-3中的粉尘可能来自燃烧烟煤的燃烧器C,D和E,因为它的颗粒较大,停留时间比从燃烧亚烟煤的燃烧器A和B长。\o"Full-sizeimage(18K)"

图3燃烧器对粉尘排放的影响图4煤的粒度对粉尘排放的影响TheeffectofthecoalblendingmethodinacoalfiredboileroncarboninashandNOxemissionHighlights:TheblendingmethodhasagreateffectoncarboninashandNOx.Carboninashmainlycomesfromthemiddleburnersetsinthefurnace.Thein-furnaceblendingmethodgivestheleastNOxandcarboninash.Abstract:ThispaperdescribesthenumericalinvestigationsoftheinfluenceoftheblendingmethodonthecombustioncharacteristicsandNOxemissionina500

MW,tangentiallycoal-firedboiler.Thein-furnaceandout-furnaceblendingmethodsaresimulatedwiththeblendof60%bituminousand40%subbituminouscoalsonaweightbasis.Thesimulationshowstheblendingmethodhasagreateffectoncarboninash,butalittleeffectonNOxemission.Thein-furnaceblendingmethodwhichburnsbituminouscoalatlowerburnersandsubbituminouscoalatupperburnersgivestheleastcarboninash.Fortwoblendingmethods,carboninashismainlyattributedtothemiddleburnersetsinthefurnace.Thefieldtestsata500

MWcoal-firedpowerplantshowedthatthein-furnaceblendingmethodsubstantiallyreducesinNOxandcarboninash,comparedwiththeout-furnaceblendingmethod.Keywords:Carboninash;

NOx;

Coalblending;

Boiler;

LOI1.IntroductionInrecentyears,blendingdifferenttypesofcoalatpulverizedcoal-firedpowerplantsisbecomingincreasinglycommoninmanycountries.Blendingcoalsandtheirutilizationincoal-firedpowerplantsoffermanyadvantages.Coalsareblendedforanumberofdifferentreasons,including:costsavings,reductionofSO2emission,extendingthelimitedsupplyofhighqualitycoal,enhancingfuelflexibility,controllingthemineralcontentofcoal,providingbettercombustion,helpingtosolveexistingproblems,andsoon[1].However,burningblendsmayproduceunexpectedandundesirableproblemsinboileroperation,efficiency,corrosion,erosion,flamestability,slagging,fouling,heatadsorptioninthefurnace,andsoon.Inpowerplants,differenttypesofcoalcanbeblended:instockpiles,inbins,andonconveyors.Layersofthecoalsarestackedinapilewiththerequiredproportionstogivethedesiredcompositionoftheblendwhenthepileisreclaimed.Sometimes,differentcoalsarestackedinseparatestockpiles,andthenpredeterminedamountsforblendarewithdrawnfromeachpilebyusingtheloader.Inthebins,thecoalstobeblendedareaddedintherequiredratio.Batchesofdifferentcoalsareaddedsequentiallytothebin.Inbeltblending,twoormoredifferentcoalsareproportionallycombinedbyeithervolumeorweightonamovingbeltconveyor.Thecoalsareloadedintoseparatebinsandblendedbydischargingthemtothevariablespeedfeeders.Thedesiredproportionofblendisobtainedbychangingthespeedsofseparatefeedersthatpassthecoalontoaconveyor,andthengoestotherawcoalbunkers

[2].Thesethreeblendingscanbecategorizedastheout-furnaceblendingmethod,accordingtothedefinitionusedbyIkedaetal.andLeeetal.

[3-5].Inthismethod,thecoalsofdifferenttypesaresimultaneouslyinjectedintothefurnaceafterbeingmixedtogether.Thismethodisquitecommoninpowerplantssincetwoormorecoalsareconvenientlyblendedinstockpiles,binsoronconveyorsasmentionedabove.Thisissometimescalledthelineblendingorbunkerblendingmethod.Inthein-furnaceblendingmethodeachcoalisinjectedintotheboilerfromaseparateburnerwithnopriormixing.Thismethodisnotpopularinpowerplantsbecausetherearedifficultiesintransportinganddistributingtwocoalsseparatelytothecoalbunkers.Therehavebeenmanystudiesonthecombustioncharacteristics,emissionsandashbehaviourofblendedcoalswithlaboratory[4-11]andpilotscalefurnace

[3],

[12-14]

and

andfullscaleutilityboiler

[15-21].Onlyafewstudies,however,werefoundintheliteraturewhichinvestigatedtheinfluenceoftheblendingmethodonthecombustionefficiencyandpollutantemission

[3-5].Ikedaetal.investigatedtheeffectofthein-furnaceblendingmethodonNOxemissionandunburnedcarboninflyashbyusingpilotfurnacewiththreestagedburners(coalcombustionrate:0.3

ton/day)

[3].Leeetal.carriedoutthecomputationalandexperimentalworkswithadroptubefurnacetostudytheinfluenceoftheblendingmethodonNOxandunburnedcarbon[4-5].Onthecontrary,astudywithafullscaleutilityboilerhasnotbeenfound,yet.ThepresentpaperdescribesthenumericalinvestigationsoftheinfluenceoftheblendingmethodonthecombustioncharacteristicsandNOxemissionina500

MW,tangentiallycoal-firedboiler.IntheCFDsimulations,threecaseswithdifferentblendingmethodsareinvestigatedwiththeblendof60%bituminousand40%subbituminouscoalsonaweightbasis.ThecarboninashandNOxemissionarespeciallyfocusedinthepresentCFDwork.DistributionsofCO,O2andgastemperatureinthefurnaceandtheircontributionsarealsoinvestigated.Finally,theplanttestsperformedina500

MWcoal-firedboiler,forthein-furnaceandout-furnaceblendingmethods,werereviewedinlinewithoperationdataaswellascarboninashandNOxemission.2.Simulation2.1.500

MWtangentially,coal-firedboilerThepresent500

MWcoal-firedunitconsistsofatangentiallycoal-firedfurnaceandasupercritical,once-through,singlereheatboiler.Thegeneralarrangementsofheatexchangerssuchassuper-heater(SH),re-heater(RH),andburnerportsareshownin

Fig.1.Theeconomizerisinstalledintherearpassoftheboiler.Theheightoftheboilerisapproximately86.3

m,andthecross-sectionalwidthanddepthofthefurnaceareboth16.5

m

[22].Fig.1.

Schematicconfigurationsofthe500

MWtangentialboiler.Thedetailedarrangementofburnersandairportsisgivenin

Fig.2,togetherwiththeconcentricfiringsystem.Thefurnacehassixburnersets,designatedasburnersetAtoF.Eachburnersetconsistsoftwocoalburnershavingdifferentfuel–airratios,CONCburnerforfuelrichconditionandWEAKburnerforfuelleancondition.ThecoalburnersareofalowNOxburnerbeingcalledaspollutionminimum(PM)burner

[22].Thesecondaryairissuppliedtothefurnacethroughauxiliary,bottomandclotchairports.Theburnersetsareinstalledinthefourcorners,sothepulverizedcoalwithprimaryairandsecondaryairareinjectedfromfourcornersintothefurnacetoformacircleinthefurnacecentre,asocalledfire-ballwhichrotatesclockwise,asshownin

Fig.2.Fig.2.

ArrangementofburnersandCCOFAports.JustabovetheFburnerset,fourCCOFA(ClosedCoupledOverFireAir)portsateachcornerareinstalledtoexecutetheairstaging,lowNOxtechnology.Theoilburner,onlyusedduringtheboilerstart-up,isinstalledbetweenburnersetsAandB,andtwooilburnersareusedbetweenC&D,andE&Fburnersets.AllburnersandairportsincludingCCOFAcanadjusttheirverticalinjectionangle(tiltangle)totherangeof±30°.Atfullloadcondition(500

MW),40burnersofAtoEburnersetsareusedforthenormaloperation,andtheFburnersetstandsbyforemergencyoperationortheregularmaintenanceofthepulverizer.2.2.SimulationForthepresentstudy,GLACIERCFDcodedevelopedbyREI(ReactionEngineeringInternational)wasused.Thiscodehasbeenusedextensivelyformodellingthephysicalandchemicalprocessesoccurringincoal-firedutilityboilers.Thecoalcombustionandpollutantformationareparticularlyemphasizedinthecode,soitaccountsforturbulenttwophasemixing,radiantandconvectiveheattransfer,coalparticledevolatilization,charoxidation,gasphasecombustionandNOxformation.Here,NOxispredictedbypostprocessorcalculation.Computationsincludefullmass,momentumandenergycouplingbetweenthegasandcoalparticlesaswellasfullcouplingbetweenturbulentfluidflow,chemicalreactions,andradiativeandconvectiveheattransfer.ThesomewhatdetaileddescriptionsofGLACIERcodeformodellingofcoalcombustioninutilityboilersaregivenelsewhere[23-25].Thetotalmeshforthepresent500

MWtangentially,coal-firedboilerconsistsof1.2millionhexahedralelements,whichisenoughtogetanengineeringsolution

[23]

,[26].Thecomputationaldomainisconfinedtothefurnacefromhoppertotheupstreamoftheconvectivepasswherethemainreactionandheattransferoccur,sotherearpassoftheboilerisomittedinthepresentgridgeneration(see

Fig.1).Allburnersandairportsshownin

Fig.2

aregeneratedinthepresentcomputationalgrid.Super-heaters(SH)andre-heaters(RH)intheupperfurnacearetreatedassimplifiedwallshavingthicknessandheatadsorption.Simulationswerecarriedoutforthreecasesforthein-furnaceandout-furnaceblendingmethods.Inthecaseoftheout-furnaceblendingmethod,twocoalsblendedbeforetheburneraresimultaneouslyinjectedintothefurnace.Forthein-furnaceblendingmethod,twocoalsareinjectedintothefurnaceseparatelyfromdifferentburnerswithoutpriorblending.Forsimulation,bituminous(Moorvale)andsubbituminous(Rotosouth)coalsareused,andtheirpropertiesaregivenin

Table1.IntheCFDcalculation,coaldevolatilizationwasmodelledusingatwo-parallelmodelproposedbyUbhayakaretal.

[27].Thedevolatilizationreactionsaredefinedbythefollowingsixparameters:Y1andY2(themassstoichiometrycoefficients),

A1

and

A2

(devolatilizationratepreexponentialfactors),

E1

and

E2

(devolatilizationactivationenergies).Thesamevaluesofparameters,asgivenin

Table2,werecommonlyusedforMoorvaleandRotosouthcoals

[23-24]

.Thecharoxidationrateandcombustionbehaviouraredefinedbythreeglobalkineticparameters:

Ac

(preexponentialfactor),

Ec(activationenergy)and

n

(reactionorder).Therespectivevaluesforkineticparametersoftwocoalsusedinthepresentsimulationareshownin

Table2

[26].CoalMoorvaleRotosouth(bituminous)(subbituminous)Proximateanalysis(wt.%,

aair-dry)Moisture9.4814.3Volatile15.0541.67Fixedcarbon62.7741.6Ash12.72.43Ultimateanalysis(wt.%,air-dry)Carbon73.6867.42Hydrogen3.864.93Oxygen6.6223.86Nitrogen1.60.85Sulphur0.210.1Ash14.032.84Heatingvalue(MJ/kg,as-received)27.2921.53Table1.PropertiesofcoalsusedinthepresentstudyCoalMoorvaleRotosouth(bituminous)(subbituminous)DevolatilizationY10.40.4Y20.80.8A1

(s-1)375,000375,000A2

(s-1)1.46E+131.46E+13E1

(kJ/mol)7474E1

(kJ/mol)251251Charoxidationn11Ac(m/K

s)10.49.4Ec(kJ/mol)97.693.4Table2.Rateparametersfordevolatilizationandcharoxidation.Threecases,differedwiththeblendingmethod,areillustratedin

Table3.CaseS-1isdesignatedasbituminouscoalsuppliedtoA,BandCburnersetswhilesubbituminouscoaltoDandEsets.CaseS-2isdefinedastheout-furnaceblendingmethod,sotwocoalsareblendedwiththeratioof60%ofbituminouscoaland40%ofsubbituminouscoalonaweightbasis,andsuppliedtoAtoEburnersetssimultaneously.ForCaseS-3,subbituminouscoalissuppliedtoAandBburnersets,andbituminouscoaltoC,DandEsets.CaseS-1and3arecategorizedasthein-furnaceblendingmethod.CoalsuppliedCaseS-1CaseS-2CaseS-3Fburnerset–––EburnersetRotosouthBlendedcoalaMoorvaleDburnersetRotosouthBlendedcoalMoorvaleCburnersetMoorvaleBlendedcoalMoorvaleBburnersetMoorvaleBlendedcoalRotosouthAburnersetMoorvaleBlendedcoalRotosouthInputdataCaseS-1,2and3Overallstoichiometry1.082Burnertiltangle(°)0Coalflowrate(ton/h)202Primaryairflowrate(ton/h)419Secondaryairflowrate(ton/h)AtE&Fburnersets233AtC&Dburnersets308AtA&Bburnersets308CCOFAairflowrate(ton/h)403Crotchairflowrate(ton/h)94PredictedresultsatmodelexitCaseS-1CaseS-2CaseS-3Carboninash(wt.%)1.653.004.64O2

(%,molarfraction)2.382.542.35CO(%)0.210.340.36Averagedgastemperature(°C)147114841485NO(ppm)106109110Table3.Inputdataandpredictedresults.Themodelinputsandsomeresultsofthesimulationsforallthethreecasesarealsosummarizedin

Table3.Thesameamountsofcoalandairflowareusedforallthreecases.AteachburnersetsfromAtoE,coalandairflowratesareevenlydistributed.FortheFburnerset,thereisnocoalflow,buttheminimumairflowissuppliedtoprotectburnersandairportsfromoverheating.ThecoalflowratesofWEAKandCONCburnersaredeterminedbythemanufacturer’sinformation.3.ResultsanddiscussionThecomputedLOI(LossofIgnition),CO,O2,NOxconcentrationsandgastemperatureatmodelexitaregivenin

Table3.Simulationsshowthatasubstantialamountofcarboninash,namelyLOI,isreducedwiththechangesinblendingmethod,from4.64%to1.65%.Ontheotherhand,NOxconcentrationshavesimilarvaluesforallthreecases.COconcentrationsdifferedbyblendingmethod.ForO2

andgastemperature,therearenodistincttendenciesamongthethreecases.ThedetailedinfluenceoftheblendingmethodonthecombustionefficiencyandpollutantformationarediscussedbelowinassociationwithLOI,CO,O2,NOxandgastemperaturedistributionsinthefurnace.3.1.LOI(LossofIgnition)ForCaseS-1,2and3,valuesofLOI,namelycarboninash,are1.65%,3.0%and4.64%atmodelexit,respectively,soitisnotedthatthemethodofblendingtwocoalsisacrucialfactordirectlyaffectingboilerefficiency.ThemostreductionoccursinCaseS-1,tobefollowedbyCaseS-2and3(see

Table3).Generally,bituminouscoalhaslessvolatilesandmorefixedcarbonthansubbituminouscoal,soitneedsmoreresidencetimeforthecompletecombustion.Theburningofthemorevolatilesinsubbituminouscoalleadstoaquickerdepletionofoxygeninthefurnacethanbituminouscoal.Overall,thelessreactivityofbituminouscoalnecessitatesthelongerresidencetimecomparedwithsubbituminouscoalsoburningitatthelowerburnersetsispreferredinthein-furnaceblendingmethod.ForCaseS-1,itseemsthatbituminouscoalsuppliedtoburnersetsA,BandChasarelativelylongresidencetimetobeburnedinthefurnace,whilebituminouscoalinCaseS-3,suppliedtotheupperfurnace(burnersetsC,DandE),doesnothaveenoughtimetobeburnedcompletely.TheseaspectsmightattributetothedecreasedcarboninashinCaseS-1andtheincreaseinCaseS-3.Thehighoxygen-deficientenvironmentseemstobeformedinCaseS-3withtheburningofsubbituminouscoalinthelowerburnerregion,andthismightleadtoinefficientcombustionofbituminouscoalintheupperburnerregion,inturn,thereisthemostcarboninashforCaseS-3thaninothercases.Gastemperatureseemstobeanotherfactoraffectingtheamountofcarboninash.Itwasreportedthatahighergastemperaturefieldpromotestheburningrateofcoalparticles

[3].TheeffectsofresidencetimeandgastemperatureonLOIwereaddressedinthepilotstudyofIkedaetal.[3].Theyreportedthatthereductionofcarboninashwasabout20%withthein-furnaceblendingmethodsupplyingbituminouscoaltothelowerburners,comparedtotheout-furnacemethod.Thisblendingmethodcorrespondswiththepresentcase,CaseS-1.Inthecaseofsupplyingbituminouscoaltotheuppe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论