版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照实验中学2024届中考适应性考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)2.解分式方程时,去分母后变形为A. B.C. D.3.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.64.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是()A. B. C. D.5.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为()A.8×107 B.880×108 C.8.8×109 D.8.8×10106.下列生态环保标志中,是中心对称图形的是()A.B.C.D.7.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A. B. C. D.8.二次函数y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.99.计算(ab2)3的结果是()A.ab5 B.ab6 C.a3b5 D.a3b610.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40° B.36° C.50° D.45°11.1.桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥12.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为2时,阴影部分的面积为__________.14.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)15.已知x1,x2是方程x2-3x-1=0的两根,则=______.16.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.17.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为_____.18.四边形ABCD中,向量_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.20.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.21.(6分)(1)计算:(1﹣)0﹣|﹣2|+;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EF⊥DE,交BC的延长线于点F,求∠F的度数.22.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?23.(8分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.24.(10分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.25.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?26.(12分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数27.(12分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.2、D【解题分析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.3、B【解题分析】
根据三角形的中位线等于第三边的一半进行计算即可.【题目详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=12故选B.【题目点拨】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.4、D【解题分析】
求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【题目详解】把,代入反比例函数,得:,,,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,,即,故选D.【题目点拨】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.5、D【解题分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】880亿=88000000000=8.8×1010,
故选D.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【解题分析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.7、A【解题分析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为.
故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8、D【解题分析】
直接利用配方法得出二次函数的顶点式进而得出答案.【题目详解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函数y=﹣x2﹣4x+5的最大值是9,故选D.【题目点拨】此题主要考查了二次函数的最值,正确配方是解题关键.9、D【解题分析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.10、B【解题分析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【题目详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.【题目点拨】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.11、B【解题分析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.12、C【解题分析】
根据中心对称图形的概念求解.【题目详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.【题目点拨】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、π﹣1【解题分析】
根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【题目详解】连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×11=π﹣1.故答案为π﹣1.【题目点拨】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.14、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解题分析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.考点:1.相似三角形的判定;2.开放型.15、﹣1.【解题分析】试题解析:∵,是方程的两根,∴、,∴===﹣1.故答案为﹣1.16、40°【解题分析】
由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.【题目详解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B与∠C是对的圆周角,∴∠B=∠C=40°.故答案为40°.【题目点拨】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.17、1【解题分析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.【题目详解】联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:1-y=1,解得:y=0,则,将x=2、y=0代入,得:,解得:,则mn=1,故答案为1.【题目点拨】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18、【解题分析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得:==.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.【解题分析】
(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【题目详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y2=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,∴顶点为D(2,﹣2),当直线l2经过点D时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×+3=如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N在抛物线的对称轴l2:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值为或2.【题目点拨】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.20、(1)证明见解析;(2)AB、AD的长分别为2和1.【解题分析】
(1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【题目详解】(1)证明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形.∵,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的长分别为2和1.【题目点拨】矩形的判定和性质;掌握判断定证三角形全等是关键.21、(1)﹣1+3;(2)30°.【解题分析】
(1)根据零指数幂、绝对值、二次根式的性质求出每一部分的值,代入求出即可;(2)根据平行线的性质可得∠EDC=∠B=,根据三角形内角和定理即可求解;【题目详解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等边三角形,∴∠B=60°,∵点D,E分别是边BC,AC的中点,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【题目点拨】(1)主要考查零指数幂、绝对值、二次根式的性质;(2)考查平行线的性质和三角形内角和定理.22、(1)4%;(2)72°;(3)380人【解题分析】
(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.【题目详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).23、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.【解题分析】
先求出不等式的解集,再求出不等式组的解集即可.【题目详解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在数轴上表示出来:;(4)原不等式组的解集为﹣1≤x≤1,故答案为x≤1,x≥﹣1,﹣1≤x≤1.【题目点拨】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.24、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解题分析】
(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
(2)根据的坐标,易求得直线的解析式.由于都是定值,则的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.【题目详解】解:(1)把代入,可以求得∴(2)过点作轴分别交线段和轴于点,在中,令,得设直线的解析式为可求得直线的解析式为:∵S四边形ABCD设当时,有最大值此时四边形ABCD面积有最大值(3)如图所示,如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
∵C(0,-3)
∴设P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
∵C(0,-3)
∴设P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此时存在点P2(,3)和P3(,3),
综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).【题目点拨】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.25、(1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解题分析】
(1)用待定系数法将坐标(2,2.4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区环保项目的实施计划
- 中班幼儿数学教案《小小设计师》
- 幼儿园大班工作总结五篇
- 2024年度金融机构不可撤销连带责任担保书3篇
- 公关行业美工公关活动海报公关策略图
- 招生方案范文7篇
- 中医科护士的工作总结
- 预防科护士推广疾病预防
- 2024全新车展活动车辆展示区清洁维护合同3篇
- 2024医院单位护士岗位聘用合同书3篇
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷代号:1141)
- 中国医院质量安全管理 第4-6部分:医疗管理 医疗安全(不良)事件管理 T∕CHAS 10-4-6-2018
- 2.秸秆和落叶的有效处理课件
- 教育中的心理效应
- 提高玻璃幕墙擦窗机轨道安装质量
- T∕CEMIA 020-2019 显示面板用N-甲基-2-吡咯烷酮
- 考古绘图(课堂PPT)
- 注塑机冷却水系统工程
- 工业管道材料选用规定
- PE管热熔对接施工方案完整
- 中医肿瘤临床路径
评论
0/150
提交评论