版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年江苏省常熟市第三中学中考数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环)67868乙命中的环数(环)510767根据以上数据,下列说法正确的是()A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同C.甲、乙成绩的众数相同 D.甲的成绩更稳定2.如图是几何体的三视图,该几何体是()A.圆锥 B.圆柱 C.三棱柱 D.三棱锥3.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.4.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A. B.2 C. D.35.如图,在中,边上的高是()A. B. C. D.6.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A.平均数 B.众数 C.方差 D.标准差7.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位8.已知,,且,则的值为()A.2或12 B.2或 C.或12 D.或9.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①② B.①③ C.①③④ D.②③④二、填空题(本大题共6个小题,每小题3分,共18分)11.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)12.我们知道方程组的解是,现给出另一个方程组,它的解是____.13.如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.14.已知△ABC中,∠C=90°,AB=9,,把△ABC绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.15.的相反数是_____.16.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.三、解答题(共8题,共72分)17.(8分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.18.(8分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?19.(8分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?20.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.21.(8分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)22.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.23.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?24.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40° B.55° C.65° D.75°
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.【题目详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;∴甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,∴甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:x甲乙命中的环数的平均数为:x乙∴甲的平均数等于乙的平均数,故选项A错误;甲的方差S甲2=15[(6−7)2+(7−7)2+(8−7)2+(6−7)2乙的方差=15[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2因为2.8>0.8,所以甲的稳定性大,故选项D正确.故选D.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.2、C【解题分析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C.点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3、A【解题分析】
先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【题目详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.4、C【解题分析】
延长BC到E使BE=AD,利用中点的性质得到CM=DE=AB,再利用勾股定理进行计算即可解答.【题目详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故选:C.【题目点拨】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.5、D【解题分析】
根据三角形的高线的定义解答.【题目详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【题目点拨】本题考查了三角形的高的定义,熟记概念是解题的关键.6、B【解题分析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D【解题分析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.8、D【解题分析】
根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.9、C【解题分析】
根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【题目详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【题目点拨】本题考查三角形内角和与两条直线平行内错角相等.10、B【解题分析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【题目详解】解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【题目点拨】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.二、填空题(本大题共6个小题,每小题3分,共18分)11、2a+12b【解题分析】如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A===,所以图形的周长为:a+c+5b,因为∠ABC<20°,所以,翻折9次后,所得图形的周长为:2a+10b,故答案为:2a+10b.12、【解题分析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【题目详解】解:由题意得,解得.故答案为:.【题目点拨】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.13、【解题分析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14、4【解题分析】
过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.【题目详解】解:过点C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB•cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC•cosA=4,
由旋转的性质得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中点,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案为:4.【题目点拨】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.15、【解题分析】
根据只有符号不同的两个数互为相反数,可得答案.【题目详解】的相反数是−.故答案为−.【题目点拨】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.16、(y﹣1)1(x﹣1)1.【解题分析】解:令x+y=a,xy=b,则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题(共8题,共72分)17、(1)、y=-+x+4;(2)、不存在,理由见解析.【解题分析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4)∴C=4①∵-=1∴b=-2a②∵抛物线过点A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴抛物线的解析式为:y=-+x+4(2)、不存在假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,+t+4),其中0<t<4则FH=+t+4FG=t∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8△OFC的面积=OC·FG=2t∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程无解∴不存在满足条件的点F考点:二次函数的应用18、大和尚有25人,小和尚有75人.【解题分析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.【题目详解】解:设大和尚有x人,小和尚有y人,依题意,得:,解得:.答:大和尚有25人,小和尚有75人.【题目点拨】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19、(1)70,0.2;(2)补图见解析;(3)80≤x<90;(4)750人.【解题分析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.详解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.20、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解题分析】
(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【题目详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.21、至少涨到每股6.1元时才能卖出.【解题分析】
根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【题目详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,解这个不等式得x≥,即x≥6.1.答:至少涨到每股6.1元时才能卖出.【题目点拨】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论