版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
修桥选址模型修桥选址模型模型讲解模型讲解已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)(1)点A、B在直线m两侧:过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。(2)点A、B在直线m同侧:过A点作AE∥m,且AE长等于PQ长,作B关于m的对称点B’,连接B’E,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。方法点拨一、题型特征:AP+PQ+QB(其中PQ长度一定)①两动点在一直线上运动,且两动点间的距离不变,两定点分居两动点所在直线的两侧;②过任一定点作两动点所构成线段的平行且相等,将这一定点经行平移;③将平移后得到的点与另一定点相连二、模型本质:两点之间,线段最短。例题演练例题演练1.如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上的两个动点,且PQ=2,当BP=()时,四边形APQE的周长最小.A.3 B.4 C.5 D.2【解答】解:如图,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,设BP=x,则CQ=BC﹣BP﹣PQ=8﹣x﹣2=6﹣x,在△CQE中,∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6﹣x=2,解得x=4.故选:B.强化训练强化训练1.(2018•如东县二模)如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为4.【解答】解:如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周长的最小值=2+4,故答案为2+4.2.(2020•陕西模拟)如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的值最小时,线段AN的长度为2.【解答】解:过P作PE∥BD交CD于E,连接AE交BD于N',过P作PM'∥AE交BD于M',当M、N分别与M'、N'重合时,此时AN+PM=A'+EN'=AEN'+PM'=AE的值最小,∵P是BC的中点,∴E为CD的中点,∴PE=BD,∵AB=BD,AB=PE,∴PE∥BD,PM'∥AE,∴四边形PEN'M'是平行四边形,∴PE=M'N',∴AB=M'N'=MN,满足题中条件,∵AE==3,∵AB∥CD,∴△ABN'∽△EDN',∴=2,∴AN'=2,即AN=2.3.如图,G、B为直线l上两个动点,且GB=2,P、Q为直线l外两定点,请在直线l上作出使得四边形PGBQ周长最小的G、B.【解答】解:如图,四边形PG′B′Q即为所求.4.(2019秋•开福区校级期末)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE===2,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD=90°,∵点M是Rt△CDE的斜边的中点,∴DM=CM,∴∠CDM=∠DCM,∴∠ADM=∠BCM在△ADM和△BCM中,,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,∴AM⊥CM;(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,∴此时,四边形PBMQ周长最小,∵QG∥PB,PQ∥BG,∴四边形BPQG是平行四边形,∴QG=BP,BG=PQ=5,∴CG=3,如图2,在Rt△BCD中,CD=6,BC=8,∴BD=10,∴BE=10,∴BG=BE﹣BG=5,CE=BE﹣BC=2,∴HM=1+3=4,HG=CD=3,在Rt△MHG'中,HG'=6+3=9,HM=4,∴MG'===,在Rt△CDE中,DE===2,∴ME=,在Rt△BME中,BM===3,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+BM=+5+3,5.(2018春•宝安区期末)如图1,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A的坐标为(﹣2,2),点B的坐标为(4,2);(2)当BP+PM+ME′的长度最小时,请直接写出此时点P的坐标为(2,);(3)如图2,点N为线段BC上的动点且CM=CN,连接MN,是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的EP的值;若不存在,请说明理由.【解答】解:(1)如图1中,在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图1中,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).故答案为(2,)(3)如图2中,当PM=PN=时,∵△MNC是等边三角形,∴∠CMN=∠CNM=60°,∵PM⊥OC,∴∠PMN=∠PNM=30°,∴∠PNF=30°+60°=90°,∵∠PFN=∠BCO=60°,∴PF=PN÷cos30°=2,∵EF==5,∴PE=5﹣2=3.如图3中,当PM=MN时,∵PM=MN=CM=,∴EP=OM=6﹣.如图4中,当点P与F重合时,NP=NM,此时PE=EF=5.综上所述,满足条件的EP的值为3或6﹣或5.1.(2017•内江)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=16.【解答】解:作PE⊥l1于E交l2于F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淋球菌性尿道炎病因介绍
- 泌尿生殖系统真菌病病因介绍
- (麦当劳餐饮运营管理资料)M008-三好六增创造价值
- 《工程精细化管理A》课件
- 开题报告:职业教育现场工程师培养的过程追踪与路径优化研究
- 中小学加固改造施工组织设计
- 2024-2025学年高一上学期《正确使用手机的科学建议》主题班会课件
- 开题报告:学前课程改革循证决策提质研究
- 开题报告:新时代加大国家语言文字推广力度实施战略研究
- 2024届内蒙古北重公司第三中学高三下学期第二次验收考试数学试题试卷
- 2024版小学五年级上册心理健康模拟试卷
- 北斗卫星导航系统构成课件讲解
- 2024年八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上教案 新人教版
- 旋挖成孔灌注桩(干作业)施工方案
- “勾股定理”说课稿
- 上海上海世界技能博物馆招聘笔试历年典型考题及考点附答案解析
- 监理单位安全教育培训计划(3篇模板)
- 义乌市建筑工程质量通病防治措施100条(2022版本)
- 突发公共卫生事件应急培训课件
- 肝硬化的护理查房模板
- 教科版四年级上册科学期末测试卷及参考答案(完整版)
评论
0/150
提交评论