版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年重庆市綦江区八上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果把分式中的x,y同时扩大为原来的4倍,现么该分式的值()A.不变 B.扩大为原来的4倍C.缩小为原来的 D.缩小为原来的2.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.283.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.14.一次函数的图象如图所示的取值范围是()A. B. C. D.5.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是().A.x1=1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-36.已知以下三个数,不能组成直角三角形的是()A.9、12、15 B.、3、2 C.0.3、0.4、0.5; D.7.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是8.下列命题的逆命题是真命题的是()A.同位角相等 B.对顶角相等C.等边对等角 D.全等三角形的面积相等9.如果把分式中的x,y同时扩大为原来的3倍,那么该分式的值()A.不变 B.扩大为原来的3倍C.缩小为原来的 D.缩小为原来的10.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()学科数学语文英语考试成绩919488A.88 B.90 C.91 D.9211.下列分式中,是最简分式的是()A. B. C. D.12.下列图标中是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=___________.14.若直线与直线的图象交x轴于同一点,则之间的关系式为_________.15.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;16.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是______________.17.定义:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形,在中,,且,如果是奇异三角形,那么______________.18.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.三、解答题(共78分)19.(8分)如图,,点为上点,射线经过点,且,若,求的度数.20.(8分)已知:如图,,平分,平分,交于点,于点,求证:点到与的距离相等.21.(8分)等腰三角形中,,,点为边上一点,满足,点与点位于直线的同侧,是等边三角形,(1)①请在图中将图形补充完整:②若点与点关于直线轴对称,______;(2)如图所示,若,用等式表示线段、、之间的数量关系,并说明理由.22.(10分)如图△ABC中,点E在AB上,连接CE,满足AC=CE,线段CD交AB于F,连接AD.(1)若∠DAF=∠BCF,∠ACD=∠BCE,求证:AD=BE;(2)若∠ACD=24°,EF=CF,求∠BAC的度数.23.(10分)如图所示,在图形中标出点A、B、C关于直线l的对称点D、E、F.若M为AB的中点,在图中标出它的对称点N.若AB=10,AB边上的高为4,则△DEF的面积为多少?24.(10分)一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.25.(12分)如图,一次函数的图像与轴交于点,与轴交于点,且与正比函数的图像交于点,结合图回答下列问题:(1)求的值和一次函数的表达式.(2)求的面积;(3)当为何值时,?请直接写出答案.26.因式分解(1)(2)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据分式的性质可得==•,即可求解.【详解】解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故答案为D.【点睛】本题考查了分式的基本性质,给分子分母同时乘以一个整式(不为0),不可遗漏是解答本题的关键.2、B【分析】根据角平分线的性质得出DE=CD=2,根据三角形的面积公式求出即可.【详解】解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.【点睛】本题是对角平分线性质的考查,熟练掌握角平分线的性质是解决本题的关键.3、D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.4、D【分析】y<0也就是函数图象在x轴下方的部分,观察图象找出函数图象在x轴下方的部分对应的自变量的取值范围即可得解.【详解】根据图象和数据可知,当y<0即图象在x轴下侧时,x>2,故选D.【点睛】本题主要考查了一次函数与不等式,数形结合思想,准确识图是解题的关键.5、D【分析】将作为一个整体,根据题意,即可得到的值,再通过求解一元一次方程,即可得到答案.【详解】根据题意,得:或∴或故选:D.【点睛】本题考查了一元一次方程、一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.6、D【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、92+122=152,能构成直角三角形,故不符合题意;B、()2+32=(2)2,能构成直角三角形,故不符合题意;C、0.32+0.42=0.52,能构成直角三角形,故不符合题意;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故符合题意;故选D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数8、C【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【详解】A、原命题的逆命题为:相等是同错角,不正确;B、原命题的逆命题为:相等的角为对顶角,不正确;C、原命题的逆命题为:等角对等边,正确;D、原命题的逆命题为:面积相等的三角形全等,不正确;
故选:C.【点睛】此题主要考查学生对命题与逆命题的理解及真假命题的判断能力,对选项要逐个验证,判断命题真假时可举反例说明.9、C【分析】根据题意和分式的基本性质即可得出结论.【详解】解:即该分式的值缩小为原来的故选C.【点睛】此题考查的是分式法基本性质的应用,掌握分式的基本性质是解决此题的关键.10、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:(分),故小华的三科考试成绩平均分式91分;故选:C.【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.11、D【分析】根据最简分式的定义:一个分式的分子与分母没有公因式时叫最简分式,逐一判断即可.【详解】A.,不是最简分式,故本选项不符合题意;B.,不是最简分式,故本选项不符合题意;C.,不是最简分式,故本选项不符合题意;D.是最简分式,故本选项符合题意.故选D.【点睛】此题考查的是最简分式的判断,掌握最简分式的定义和公因式的定义是解决此题的关键.12、D【解析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、不是轴对称图形,此项不符题意D、是轴对称图形,此项符合题意故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.二、填空题(每题4分,共24分)13、48°.【解析】解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠DBC=∠ABD=24°.∵∠A=60°,∴∠ACB=180°﹣∠A﹣∠ACB=180°﹣60°﹣48°=72°.∵FE是BC的中垂线,∴FB=FC,∴∠FCB=∠DBC=24°,∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°.故答案为48°.点睛:本题考查了三角形内角和定理,线段垂直平分线性质,角平分线定义,等腰三角形性质的应用,能熟记知识点是解此题的关键,题目比较好,难度适中.14、2p+3q=1.【解析】根据图象与x轴交点求法得出直线y=3x+p与直线y=-2x+q的图象与x轴交点,进而利用两式相等得出答案即可.【详解】解:∵直线y=3x+p与直线y=-2x+q的图象交x轴于同一点,
∴当y=1得出1=3x+p,当y=1得出1=-2x+q,整理得出:2p+3q=1,
故答案为:2p+3q=1.15、25或7【解析】试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:②长为3、4的边都是直角边时:第三边长的平方为:综上,第三边长的平方为:25或7.故答案为25或7.16、xy=z【解析】试题分析:观察数列可发现所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x、y、z表示这列数中的连续三个数,则x、y、z满足的关系式是xy=z.考点:规律探究题.17、1::【分析】由△ABC为直角三角形,利用勾股定理列出关系式c2=a2+b2,记作①,再由新定义两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,列出关系式2a2=b2+c2,记作②,或2b2=a2+c2,记作③,联立①②或①③,用一个字母表示出其他字母,即可求出所求的比值.【详解】∵Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,∴根据勾股定理得:c2=a2+b2,记作①,又Rt△ABC是奇异三角形,∴2a2=b2+c2,②,将①代入②得:a2=2b2,即a=b(不合题意,舍去),∴2b2=a2+c2,③,将①代入③得:b2=2a2,即b=a,将b=a代入①得:c2=3a2,即c=a,则a:b:c=1::.故答案为:1::.【点睛】此题考查了新定义的知识,勾股定理.解题的关键是理解题意,抓住数形结合思想的应用.18、9.5×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-1,故答案为:9.5×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共78分)19、【分析】先根据等腰三角形的性质得出∠C=30°,再根据三角形外角性质得到∠DEA=60°,最后根据平行线的性质得到即可.【详解】,,,是的外角,,,.【点睛】椙主要考查了等腰三角形的性质、三角形外角的性质以及平行线的性质,熟练掌握这些性质是解题的关键.20、见解析.【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到,得出DO=BO,则CE是BD的垂直平分线,根据等腰三角形的三线合一的性质得出EC平分∠BED,从而得证.【详解】证明:∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵DB平分∠ADC,CE平分∠BCD,
∴∠ODC+∠OCD==90°,
∴∠DOC=90°,又CE平分∠BCD,CO=CO,易证∴DO=BO,
∴CE是BD的垂直平分线,
∴EB=ED,又∠DOC=90°,
∴EC平分∠BED,
∴点O到EB与ED的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.21、(1)①画图见解析;②75°;(2)AB=BE+BD,证明见解析.【分析】(1)①根据题意直接画出图形;②根据对称性判断出AB⊥DE,再判断出∠DAE=60°,可以求出∠BAC,即可得出结论;(2)先判断出∠ADF=∠EDB,进而判断出△BDE≌△FDA,即可得出结论.【详解】解:(1)①根据题意,补全图形如图所示,②当点D与点E关于直线AB轴对称时,∴AB⊥DE,∵△ADE是等边三角形,AB⊥DE,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE=30°,∵AB=AC,∴∠ACB=(180°-∠BAC)=75°,故答案为75°;(2)AB=BE+BD,证明如下:如图,在BA上取一点F,使BF=BD,DE与AB的交于H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°,∴∠BAC=180°-∠ACB-∠ABC=20°,∴∠BAE=∠DAE-∠BAC=40°,在△BCD中,BC=BD,∴∠BDC=∠ACB=80°,∴∠DBC=180°-∠ACB-∠BDC=20°,∴∠ABD=∠ABC-∠DBC=60°,∵BF=BD,∴△BDF是等边三角形,∵∠AED=∠ABD=60°,∠AHE=∠BHD,∴∠BDE=∠BAE=40°,∴∠BDF=60°,BD=FD=BF,∴∠ADF=180°-∠BDC-∠BDF=40°=∠ADF,又∵DE=AD,∴△BDE≌△FDA(SAS),∴FA=BE,∴BA=BF+FA=BD+BE.【点睛】本题主要考查了轴对称的性质,三角形的内角和定理,等腰三角形的判定和性质,全等三角形的判定和性质,正确做出辅助线,构造出全等三角形是解本题的关键.22、(1)证明见解析;(2)52°.【分析】(1)根据,,,即可得到,进而得出;(2)根据,可得,依据,可得,再根据三角形内角和定理,即可得到的度数.【详解】解:(1),,,又,,,;(2),,,,又,中,.【点睛】本题主要考查了全等三角形的判定与性质,熟悉相关性质是解题的关键.23、△DEF的面积是1【解析】试题分析:根据轴对称的性质,可知两个三角形全等,所以对应边相等,再由题中给出条件易得所求三角形的面积.试题解析:如图所示,∵AB=10,∴DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护耳朵教案及反思
- 配件风险管理策略
- 服装行业招投标违规责任追究
- 游戏厅装修施工合同
- 商业综合体砌体施工协议
- 公共安全管理办法释义
- 大型电力变电站施工合同
- 劳动争议处理策略研究
- 北京环保项目采购规定
- 污水处理工程招投标合同
- 最新小学科学教师实验操作技能大赛
- 控制三高健康生活远离心脑血管疾病课件(模板)
- 光学相干断层成像(OCT)在冠状动脉介入诊断与治疗中的应用课件
- 模拟法庭案例脚本:校园欺凌侵权案 社会法治
- 四年级上册美术教案-14漂亮的房间 |苏少版
- 05 03 第五章第三节 投身崇德向善的道德实践
- 安徽省合肥市第四十五中学2022-2023学年九年级上学期数学期中考试卷
- 桩基础工程施工组织方案
- 供水运营管理实施方案(4篇)
- 水土保持工程质量评定表
- 水电站基本构造原理与类型ppt版(共67)
评论
0/150
提交评论