相交线与平行线易错题汇编含答案_第1页
相交线与平行线易错题汇编含答案_第2页
相交线与平行线易错题汇编含答案_第3页
相交线与平行线易错题汇编含答案_第4页
相交线与平行线易错题汇编含答案_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

相交线与平行线易错题汇编含答案一、选择题1.如图,在矩形中,,,若是上的一个动点,则的最小值是()A.16 B.15.2 C.15 D.14.8【答案】D【解析】【分析】根据题意,当PC⊥BD时,有最小值,由勾股定理求出BD的长度,由三角形的面积公式求出PC的长度,即可求出最小值.【详解】解:如图,当PC⊥BD时,有最小值,在矩形ABCD中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得,∴,在△BCD中,由三角形的面积公式,得,即,解得:,∴的最小值是:;故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P的位置,得到PC最短.2.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80° B.50° C.30° D.20°【答案】D【解析】【分析】【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.3.如图,下列能判定∥的条件有几个()(1)(2)(3)(4).A.4 B.3 C.2 D.1【答案】B【解析】【分析】根据平行线的判定逐一判定即可.【详解】因为,所有AD∥BC,故(1)错误.因为,所以∥,故(2)正确.因为,所以∥,故(3)正确.因为,所以∥,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.4.如图,点分别在的边上,点在的内部,若,则的度数是()A. B. C. D.【答案】A【解析】【分析】利用平行线定理即可解答.【详解】解:根据∠1=∠F,可得AB//EF,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.5.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64° B.68° C.58° D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.6.如图,一副三角板按如图所示的位置摆放,其中,,,,则的度数为()A.75° B.90° C.105° D.120°【答案】C【解析】【分析】延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE交AB于点F,∵AB∥CD,∴∠AFE=∠C=60°,在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.故选:C.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.7.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()A.40° B.60° C.50° D.70°【答案】B【解析】【分析】根据两直线平行内错角相等得,再根据直角三角板的性质得,即可求出∠2的度数.【详解】∵a∥b∥c∴∵直角三角板的直角顶点落在直线b上∴∵∠1=30°∴故答案为:B.【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个 B.3个 C.4个 D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;

③正确;

④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180° B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180° D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D.10.如图,直线AB,AB相交于点O,OE,OF为射线,则对顶角有()A.1对 B.2对 C.3对 D.4对【答案】B【解析】【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【详解】图中对顶角有:∠AOC与∠BOD、∠AOD与∠BOC,共2对.故选B.【点睛】本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可11.在下图中,∠1,∠2是对顶角的图形是()A. B. C. D.【答案】B【解析】略12.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.13.如图,,已知,则的度数为()A. B. C. D.【答案】B【解析】【分析】延长BC、EF交于点G,根据平行线的性质得,再根据三角形外角的性质和平角的性质得,最后根据四边形内角和定理求解即可.【详解】延长BC、EF交于点G∵∴∵∴∵∴故答案为:B.【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.14.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是(

)A.1个 B.2个 C.3个 D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.15.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95° B.∠β﹣∠α=95° C.∠α+∠β=85° D.∠β﹣∠α=85°【答案】D【解析】【分析】过点C作CF∥AB,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C作CF∥AB∵AB∥DE,CF∥AB∴AB∥DE∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD=∠BCF+∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.16.如图分别平分则图中与相等的角(不含它本身)的个数是()A. B. C. D.【答案】C【解析】【分析】先根据平行线的性质得到,,再利用把角平分线的性质得到,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵,∴(两直线平行,内错角相等),又∵分别平分∴,又∵,,(对顶角相等),∴=(等量替换)故与相等的角有7个,故C为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,,,则下列结论正确的个数有()①;②;③;④A.4个 B.3个 C.2个 D.1个【答案】A【解析】【分析】根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.【详解】∵∠1=∠B∴AD∥BC,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB∥CD,③正确∴∠1=∠D,∴∠D=∠B,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC作准备.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115° B.120°C.145° D.135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt△ABC中,∠A=90°,∵∠1=45°(已知),

∴∠3=90°-∠1=45°(三角形的内角和定理),

∴∠4=180°-∠3=135°(平角定义),

∵EF∥MN(已知),

∴∠2=∠4=135°(两直线平行,同位角相等).

故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.若a⊥b,c⊥d,则a与c的关系是()A.平行 B.垂直 C.相交 D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.【详解】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直.故选:D.【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.20.给出下列说法,其中正确的是()A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论