




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市进贤二中2024届高一上数学期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的定义域为,则函数的定义域为A. B.C. D.2.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.43.已知函数是定义在上的奇函数,对任意的都有,当时,,则()A. B.C. D.4.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.5.=(
)A. B.C. D.6.关于不同的直线与不同的平面,有下列四个命题:①,,且,则②,,且,则③,,且,则④,,且,则其中正确命题的序号是A.①② B.②③C.①③ D.③④7.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.8.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.9.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.120010.已知函数,若对一切,都成立,则实数a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______12.已知奇函数满足,,若当时,,则______13.已知集合.(1)集合A的真子集的个数为___________;(2)若,则t的所有可能的取值构成的集合是___________.14.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.15.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________16.已知函数,那么_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,.(1)求;(2)若集合,且,求实数a的取值范围.18.将函数的图象向左平移个单位后得到函数的图象,设函数(1)求函数的最小正周期;(2)若对任意恒成立,求实数m的取值范围19.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式20.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.21.如图,在四棱锥中,平面,底面是菱形,,,,为与的交点,为棱上一点.(Ⅰ)证明:平面;(Ⅱ)若平面,求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域2、D【解析】令则即当时,当时,则令,,由图得共有个点故选3、C【解析】由可推出,可得周期,再利用函数的周期性与奇偶性化简,代入解析式计算.【详解】因为,所以,故周期为,又函数是定义在上的奇函数,当时,,所以故选:C.4、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题5、A【解析】由题意可得:.本题选择A选项6、C【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【详解】对于①,若,,且,显然一定有,故正确;对于②,因为,,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于③,若,//且//,则一定有,故③正确;对于④,,,且,则与的位置关系不定,故④错故正确的序号有:①③.故选C【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.7、B【解析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B8、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.9、C【解析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C10、C【解析】将,成立,转化为,对一切成立,由求解即可.【详解】解:因为函数,若对一切,都成立,所以,对一切成立,令,所以,故选:C【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.二、填空题:本大题共6小题,每小题5分,共30分。11、①-2②.【解析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;12、【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解.【详解】因为,即是以周期为的周期函数.为奇函数且当时,,,当时,所以故答案为:13、①.15②.【解析】(1)根据集合真子集的计算公式即可求解;(2)根据集合的包含关系即可求解.【详解】解:(1)集合A的真子集的个数为个,(2)因为,又,所以t可能的取值构成的集合为,故答案为:15;.14、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:15、4π【解析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π16、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求出集合,再按照并集和补集计算即可;(2)先求出,再由求出a取值范围即可.【小问1详解】,,;【小问2详解】,由题得故.18、(1)最小正周期是;(2)【解析】(1)根据图象平移计算方法求出的表达式,然后计算,再用周期公式求解即可;(2)换元令,结合自变量范围求得函数的值域,再根据不等式即可求出参数范围【详解】解:(1)依题意得则所以函数的最小正周期是;(2)令,因为,所以,则,,即由题意知,解得,即实数m的取值范围是【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为或的形式,则最小正周期为,最大值为,最小值为或结合定义域求取最值19、(1);(2)奇函数,理由见解析;(3).【解析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.20、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.21、(Ⅰ)答案见详解;(Ⅱ).【解析】(Ⅰ)平面,,四边形是菱形,,平面;(Ⅱ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人挖机租赁合同范本
- 借款合同范例房产
- 仓储合同范本标
- 三基护理考试模拟题+答案
- 电子技术及实训练习题+答案
- 上半年房地产销售工作总结
- 中医康复治疗技术试题库+参考答案
- 制作书本合同范本
- 中医诊所劳务合同范本
- 一本好书让我改变自己超越自己演讲稿
- 民事诉讼法学整套ppt课件完整版教学教程最全电子讲义(最新)
- 材料化学合成与制备技术
- 金属工艺学(铸造)课件
- DB23∕T 343-2003 国有林区更新造林技术规程
- 医疗废物管理组织机构架构图
- cjj/t135-2009《透水水泥混凝土路面技术规程》
- 短时耐受电流
- 社保人事专员绩效考核表
- 上海世博会对上海城市竞争力影响的评估模型
- 河南书法家协会入会申请表
- 乡村兽医登记申请表(共1页)
评论
0/150
提交评论