江苏省南通巿启东中学2023-2024学年数学高一上期末质量检测模拟试题含解析_第1页
江苏省南通巿启东中学2023-2024学年数学高一上期末质量检测模拟试题含解析_第2页
江苏省南通巿启东中学2023-2024学年数学高一上期末质量检测模拟试题含解析_第3页
江苏省南通巿启东中学2023-2024学年数学高一上期末质量检测模拟试题含解析_第4页
江苏省南通巿启东中学2023-2024学年数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通巿启东中学2023-2024学年数学高一上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.2.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣13.已知函数和,则下列结论正确的是A.两个函数的图象关于点成中心对称图形B.两个函数的图象关于直线成轴对称图形C.两个函数的最小正周期相同D.两个函数在区间上都是单调增函数4.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.5.已知角终边上一点,则A. B.C. D.6.将函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A. B.C. D.7.若函数的定义域是()A. B.C. D.8.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位9.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)10.规定从甲地到乙地通话min的电话费由(元)决定,其中>0,[]是大于或等于的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5min的电话费为()元A.4.8 B.5.2C.5.6 D.611.图1是淘宝网某商户出售某种产品的数量与收支差额(销售额-投入的费用)的图象,销售初期商户为亏损状态,为了实现扭亏为盈,实行了某种措施,图2为实行措施后的图象,则关于两个图象的说法正确的是A.实行的措施可能是减少广告费用 B.实行的措施可能是提高商品售价C.点处累计亏损最多 D.点表明不出售商品则不亏损12.已知函数是定义域为的奇函数,且,当时,,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数的单调递增区间为__________14.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.15.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.16.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.三、解答题(本大题共6小题,共70分)17.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值18.已知函数,不等式的解集为(1)求不等式的解集;(2)当在上单调递增,求m的取值范围19.已知函数,为偶函数(1)求k的值.(2)若函数,是否存在实数m使得的最小值为0,若存在,求出m的值;若不存在,请说明理由20.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解21.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围22.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并证明

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【点睛】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题2、B【解析】当x<0时,,选B.点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.3、D【解析】由题意得选项A中,由于的图象关于点成中心对称,的图象不关于点成中心对称,故A不正确选项B中,由于函数的图象关于点成中心对称,的图象关于直线成轴对称图形,故B不正确选项C中,由于的周期为2π,的周期为π,故C不正确选项D中,两个函数在区间上都是单调递增函数,故D正确选D4、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C5、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题6、A【解析】先根据三角函数图象变换规律写出所得函数的解析式,再求出其对称中心,确定选项【详解】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为令,得,所以函数的对称中心为观察选项只有A符合故选A【点睛】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高7、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C8、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题9、C【解析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.10、C【解析】计算,代入函数,计算即得结果.【详解】由,得.故选:C.11、B【解析】起点不变,所以投入费用不变,扭亏为盈变快了,所以可能是提高商品售价,选B.点睛:有关函数图象识别问题,由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题12、A【解析】由奇偶性结合得出,再结合解析式得出答案.【详解】由函数是定义域为的奇函数,且,,而,则故选:A二、填空题(本大题共4小题,共20分)13、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.14、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,15、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:16、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.三、解答题(本大题共6小题,共70分)17、(1),;(2)最大值2,最小值【解析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大值和最小值.【详解】解:(1)因为,,所以,所以,又因为,所以,故的解析式为,所以的最小正周期为.(2)因为,所以,所以,则,故在区间上的最大值2,最小值.【点睛】本题主要考查了三角函数的恒等变换的应用,三角函数的性质,注重对基础知识的考查.18、(1);(2)﹒【解析】(1)根据二次不等式的解法求出b和c即可;(2)g(x)为开口向下的二次函数,要在[1,2]上递增,则对称轴为x=2或在x=2的右侧.【小问1详解】∵的解集为,∴1和2为方程的根,∴,则可得;∴,∴,即解集为:;【小问2详解】∵在上单调递增,∴,故,m的取值范围为:﹒19、(1)(2)存在使得的最小值为0【解析】(1)利用偶函数的定义可得,化简可得对一切恒成立,进而求得的值;(2)由(1)知,,令,则,再分、、进行讨论即可得解【小问1详解】解:由函数是偶函数可知,,即,所以,即对一切恒成立,所以;【小问2详解】解:由(1)知,,,令,则,①当时,在上单调递增,故,不合题意;②当时,图象对称轴为,则在上单调递增,故,不合题意;③当时,图象对称轴为,当,即时,,令,解得,符合题意;当,即时,,令,解得(舍;综上,存在使得的最小值为020、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解.综上,对任意的,方程都有解21、(1)证明见解析(2)【解析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论