版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市2024届高一上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=logb(x-a)的图象可能是()A. B.C. D.2.已知全集,集合,,则()A. B.C. D.3.已知命题p:∃n∈N,2n>2021.那么A.∀n∈N,2n≤2021 B.∀n∈NC.∃n∈N,2n≤2021 D.∃n∈N4.下列函数中定义域为,且在上单调递增的是A. B.C. D.5.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.26.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.7.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.8.若,则()A.2 B.1C.0 D.9.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.610.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切11.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.212.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-2二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;14.已知tanα=3,则sin15.设,则__________16.已知向量,且,则_______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数为奇函数,且图象的相邻两对称轴间的距离为.(1)求的解析式与单调递减区间;(2)已知在时,求方程的所有根的和.18.(Ⅰ)设x,y,z都大于1,w是一个正数,且有logxw=24,logyw=40,logxyzw=12,求logzw(Ⅱ)已知直线l夹在两条直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段中点为P(0,1),求直线l的方程19.(1)计算(2)已知,求的值20.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断的奇偶性,并求在区间上的值域.21.如图,在矩形中,点是边上中点,点在边上(1)若点是上靠近的三等分点,设,求的值(2)若,当时,求的长22.如图,已知圆的圆心在坐标原点,点是圆上的一点(Ⅰ)求圆的方程;(Ⅱ)若过点的动直线与圆相交于,两点.在平面直角坐标系内,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C.2、D【解析】先求得全集U和,根据补集运算的概念,即可得答案.【详解】由题意得全集,,所以.故选:D3、A【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题p:∃n∈N,2n>2021的否定¬p为:∀n∈N,故选:A4、D【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.5、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.6、B【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.7、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.8、C【解析】根据正弦、余弦函数的有界性及,可得,,再根据同角三角函数的基本关系求出,即可得解;【详解】解:∵,,又∵,∴,,又∵,∴,∴,故选:C9、A【解析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A10、C【解析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离11、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D12、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、15海里/小时【解析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时14、3【解析】由题意利用同角三角函数的基本关系,求得要求式子的值【详解】∵tanα=3,∴sinα•cosα=sin故答案为310【点睛】本题主要考查同角三角函数的基本关系,属于基础题15、2【解析】由函数的解析式可知,∴考点:分段函数求函数值点评:对于分段函数,求函数的关键是要代入到对应的函数解析式中进行求值16、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),,(2)【解析】(1)将函数变形为,由函数的周期及奇偶性可求解;(2)解方程得或,即或,利用正弦函数的性质可求解.【小问1详解】图象的相邻两对称轴间的距离为,的最小正周期为,即可得,又为奇函数,则,,又,,故的解析式为,令,得函数的递减区间为,.【小问2详解】,,,方程可化为,解得或,即或当时,或或解得或或当时,,所以综上知,在时,方程的所有根的和为18、(Ⅰ)60;(Ⅱ)x+4y-4=0【解析】(Ⅰ)logxw=24,logyw=40,logxyzw=12,将对数式改写指数式,得到.进而得出.问题得解(Ⅱ)设直线与的交点分别为,.可得,由的中点为,可得,.将,代入即可求解【详解】(Ⅰ)∵logxw=24,logyw=40,logxyzw=12,将对数式改写为指数式,得到x24=w,y40=w,(xyz)12=w从而,z12===,那么w=z60,∴logzw=60(Ⅱ)设直线l与l1,l2的交点分别为A(x1,y1),B(x2,y2)则
(*)∵A,B的中点为P(0,1),∴x1+x2=0,y1+y2=2.将x2=-x1,y2=2-y1代入(*)得,解之得,,所以,kAB==-,所以直线l的方程为y=-x+1,即x+4y-4=0【点睛】本题考查了指数与对数的互化、直线交点、中点坐标公式,考查了推理能力与计算能力,属于基础题19、(1);(2)3.【解析】(1)由题意结合对数的运算法则和对数恒等式的结论可得原式的值为;(2)令,计算可得原式.试题解析:(1);(2)设则,所以
.20、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因为,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所以在区间上的值域为.21、(1);(2).【解析】(1),∵是边的中点,点是上靠近的三等分点,∴,又∵,,∴,;(2)设,则,以,为基底,,,又,∴,解得,故长为22、(Ⅰ);(Ⅱ).【解析】(Ⅰ)设圆的方程为,将代入,求得,从而可得结果;(Ⅱ)先设,由可得,再证明对任意,满足即可,,则利用韦达定理可得,,由角平分线定理可得结果.【详解】(Ⅰ)设圆的方程为,将代入,求得,所以圆的方程为;(Ⅱ)先设,,由由(舍去)再证明对任意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度深基坑支护施工合同模板4篇
- 2025年度文化旅游项目投资合作合同范本4篇
- 2025年度门头装修工程节能评估与验收合同范本4篇
- 2025年度网络安全个人临时雇佣合同样本3篇
- 二零二五年度智能机器人研发制造合同模板3篇
- 2025版宠物医院连锁店品牌授权及门店运营合同4篇
- 2025年度木材加工企业订单合作合同范本二零二五3篇
- 2025年度夏令营后勤保障与服务支持合同3篇
- 2025年度门窗行业供应链优化与整合合同4篇
- 二零二五版农业机械租赁市场运营管理合同2篇
- 大学生职业规划大赛生涯发展报告
- 旅居管家策划方案
- GB/T 26316-2023市场、民意和社会调查(包括洞察与数据分析)术语和服务要求
- 春节值班安全教育培训
- 锂离子电池生产工艺流程图
- 带状疱疹护理查房
- 平衡计分卡-化战略为行动
- 幼儿园小班下学期期末家长会PPT模板
- 维克多高中英语3500词汇
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
评论
0/150
提交评论