版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市第八中学2023年数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.2.若集合,则()A. B.C. D.3.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.4.下列哪一项是“”的必要条件A. B.C. D.5.已知函数是定义在上的奇函数,对任意的都有,当时,,则()A. B.C. D.6.直线l:x﹣2y+k=0(k∈R)过点(0,2),则k的值为()A.﹣4 B.4C.2 D.﹣27.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.8.设集合,,,则A. B.C. D.9.若,,,则、、大小关系为()A. B.C. D.10.下列函数中与函数是同一个函数的是()A. B.C. D.11.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.12.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.二、填空题(本大题共4小题,共20分)13.若向量与共线且方向相同,则___________14.已知函数,则的值是()A. B. C. D.15.已知函数,若正实数,满足,则的最小值是____________16.过点且与直线垂直的直线方程为___________.三、解答题(本大题共6小题,共70分)17.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值.18.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.19.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值20.已知向量(1)当时,求的值;(2)若为锐角,求的范围.21.已知,,且若,求的值;与能否平行,请说明理由22.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<0
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D2、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。3、C【解析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C4、D【解析】根据必要条件的定义可知:“”能推出的范围是“”的必要条件,再根据“小推大”的原则去判断.【详解】由题意,“选项”是“”的必要条件,表示“”推出“选项”,所以正确选项为D.【点睛】推出关系能满足的时候,一定是小范围推出大范围,也就是“小推大”.5、C【解析】由可推出,可得周期,再利用函数的周期性与奇偶性化简,代入解析式计算.【详解】因为,所以,故周期为,又函数是定义在上的奇函数,当时,,所以故选:C.6、B【解析】将点(0,2)代入直线l:x﹣2y+k=0(k∈R)的方程中,可解得k的值.【详解】由直线l:x﹣2y+k=0(k∈R)过点(0,2).所以点的坐标满足直线l的方程即则,故选:B.【点睛】本题考查点在直线上求参数,属于基础题.7、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.8、B【解析】,,则=,所以故选B.9、B【解析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得【详解】,,,所以故选:B【点睛】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论10、B【解析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数的定义为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数;对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数;对于C中,函数与函数的对应法则不同,不是同一函数;对于D中,函数的定义域为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数.故选:B.11、C【解析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.12、A【解析】根据直线经过第一、二、四象限判断出即可得到结论.【详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.二、填空题(本大题共4小题,共20分)13、2【解析】向量共线可得坐标分量之间的关系式,从而求得n.【详解】因为向量与共线,所以;由两者方向相同可得.【点睛】本题主要考查共线向量的坐标表示,熟记共线向量的充要条件是求解关键.14、B【解析】分段函数求值,根据自变量所在区间代相应的对应关系即可求解【详解】函数那么可知,故选:B15、9【解析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:916、【解析】利用垂直关系设出直线方程,待定系数法求出,从而求出答案.【详解】设与直线垂直的直线为,将代入方程,,解得:,则与直线垂直的直线为.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)最大值为,最小值为.【解析】(1)展开两角差的余弦,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出相位的范围,再由正弦函数的有界性可求函数在区间上的最大值和最小值.【小问1详解】,,的最小正周期为;【小问2详解】因,所以,所以,所以函数在区间上的最大值为,最小值为.18、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实数,使得或对任意的恒成立,令,则,则对于恒成立等价于在恒成立,即在恒成立,又当时,,故不存在实数,使得恒成立,对于对任意的恒成立,等价于在恒成立,由,可得在恒成立,又,在上单调递减,∴,综上可得,存在使得对任意的恒成立.【点睛】关键点点睛:本题第二问的关键是配凑,然后利用条件可证;第三问的关键是转化为否存在实数,使得或在恒成立,再利用参变分离法解决.19、(1);(2)【解析】根据,是夹角为的两个单位向量即可求出,然后利用向量的模的公式和数量积公式即可求得结果;根据即可求出向量夹角的余弦值【详解】是夹角为的两个单位向量;;,,;;【点睛】本题考查向量模的公式,考查向量数量积计算公式以及向量夹角的余弦公式,属于基础题20、(1)x或x=﹣2;(2)x>﹣2且x【解析】(1)利用向量的数量积为零列出方程求解即可.(2)根据题意得•0且,不同向,列出不等式,即可求出结果【详解】(1)2(1+2x,4),2(2﹣x,3),(2)⊥(2),可得(2x+1)(2﹣x)+3×4=0即﹣2x2+3x+14=0.解得:x或x=﹣2(2)若,为锐角,则•0且,不同向•x+2>0,∴x>﹣2,当x时,,同向∴x>﹣2且x【点睛】本题主要考查向量垂直的坐标表示,考查向量夹角为锐角的充要条件,意在考查学生对这些知识的掌握水平和分析推理能力.21、(1);(2)不能平行.【解析】推导出,从而,,进而,由此能求出假设与平行,则推导出,,由,得,不能成立,从而假设不成立,故与不能平行【详解】,,且.,,,,,.假设与平行,则,则,,,,不能成立,故假设不成立,故与不能平行【点睛】本题考查向量的模的求法,考查向量能否平行的判断,考查向量垂直、向量平行的性质等基础知识,考查运算求解能力,是基础题.22、(1)奇函数(2)见解析(3)【解析】(1)先求函数f(x)的定义域,然后检验与f(x)的关系即可判断;(2)利用单调性的定义可判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚协议书参考模板 3篇
- 基于2024年度需求的土地租赁合同:茶园用地租约
- 公司股权转让协议范本3篇
- 学校转让合同
- 借款合同补充协议
- 劳动合同延期协议书范本标准版
- 校园足球合作协议书
- 新版个人之间的购销合同完整版
- 2024年度工程改造项目承包商选择合同
- 机电设备购销合同书范文
- 110kV升压站构支架组立施工方案
- 物业管理服务方案及服务保障措施
- 施工总平面布置图范文
- 家长会课件:三年级上册期中数学家长会课件
- 初中数学七年级上册《绝对值》说课课件 肖娜
- 不锈钢内衬特氟龙风管系统
- 中国古代建筑欣赏(最全)
- 新生儿高胆红素血症-PPT
- 水平定向钻施工技术培训的讲义课件
- 骆驼的抗沙标配(2020新疆中考说明文阅读试题含答案)
- 铁路客运员(初级)理论考试复习题库汇总(含答案)
评论
0/150
提交评论