版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄石市2023-2024学年高一上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知幂函数的图象过点(2,),则的值为()A. B.C. D.2.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的A.4倍 B.3倍C.倍 D.2倍3.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则4.已知,则=A.2 B.C. D.15.函数零点所在区间为A. B.C. D.6.命题“,使得”的否定是()A., B.,C., D.,7.设全集,,,则A. B.C. D.8.设函数的定义域为.则“在上严格递增”是“在上严格递增”的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要9.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.10.某国近日开展了大规模COVID-19核酸检测,并将数据整理如图所示,其中集合S表示()A.无症状感染者 B.发病者C.未感染者 D.轻症感染者11.已知函数fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)12.已知点,,,且满足,若点在轴上,则等于A. B.C. D.二、填空题(本大题共4小题,共20分)13.点关于直线的对称点的坐标为______.14.不等式的解集是________.15.将函数的图象向左平移个单位长度后得到的图象,则__________.16.已知函数是定义在R上的增函数,且,那么实数a的取值范围为________三、解答题(本大题共6小题,共70分)17.化简(1)(2)18.已知函数f(x)=2sin(ωx+φ)+1()的最小正周期为π,且(1)求ω和φ的值;(2)函数f(x)的图象纵坐标不变的情况下向右平移个单位,得到函数g(x)的图象,①求函数g(x)的单调增区间;②求函数g(x)在的最大值19.已知函数,.求:(1)求函数在上的单调递减区间(2)画出函数在上的图象;20.已知直线,点.(1)求过点且与平行的直线的方程;(2)求过点且与垂直的直线的方程.21.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?22.已知1与2是三次函数的两个零点.(1)求的值;(2)求不等式的解集.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题2、D【解析】由题意,求出圆锥的底面面积,侧面面积,即可得到比值【详解】圆锥的轴截面是正三角形,设底面半径为r,则它的底面积为πr2;圆锥的侧面积为:2rπ•2r=2πr2;圆锥的侧面积是底面积的2倍故选D【点睛】本题是基础题,考查圆锥的特征,底面面积,侧面积的求法,考查计算能力3、C【解析】利用空间位置关系的判断及性质定理进行判断或举反例判断【详解】对于A,若n⊂平面α,显然结论错误,故A错误;对于B,若m⊂α,n⊂β,α∥β,则m∥n或m,n异面,故B错误;对于C,若m⊥n,m⊥α,n⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C正确;对于D,若α⊥β,m⊂α,n⊂β,则m,n位置关系不能确定,故D错误故选C【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题4、D【解析】.故选.5、C【解析】利用零点存在性定理计算,由此求得函数零点所在区间.【详解】依题意可知在上为增函数,且,,,所以函数零点在区间.故选C.【点睛】本小题主要考查零点存在性定理的运用,属于基础题.6、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B7、B【解析】全集,,,.故选B.8、A【解析】利用特例法、函数单调性的定义结合充分条件、必要条件的定义判断可得出合适的选项.【详解】若函数在上严格递增,对任意的、且,,由不等式的性质可得,即,所以,在上严格递增,所以,“在上严格递增”“在上严格递增”;若在上严格递增,不妨取,则函数在上严格递增,但函数在上严格递减,所以,“在上严格递增”“在上严格递增”.因此,“在上严格递增”是“在上严格递增”的充分不必要条件.故选:A.9、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.10、A【解析】由即可判断S的含义.【详解】解:由图可知,集合S是集合A与集合B的交集,所以集合S表示:感染未发病者,即无症状感染者,故选:A.11、C【解析】根据导数求出函数在区间上单调性,然后判断零点区间.【详解】解:根据题意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函数的零点定理可知,fx零点的区间为(2故选:C12、C【解析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C二、填空题(本大题共4小题,共20分)13、【解析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.14、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.15、0【解析】根据题意,可知将函数的图象向右平移个单位长度后得到,由函数图象的平移得出的解析式,即可得出的结果.【详解】解:由题意可知,将函数的图象向右平移个单位长度后得到,则,所以.故答案为:0.16、【解析】利用函数单调性的定义求解即可.【详解】由已知条件得,解得,则实数的取值范围为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】三角换元之后,逆用和差角公式即可化简【小问1详解】【小问2详解】18、(1);(2)①增区间为;②最大值为3.【解析】(1)直接利用函数的周期和函数的值求出函数的关系式(2)利用函数的平移变换求出函数g(x)的关系式,进一步求出函数的单调区间(3)利用函数的定义域求出函数的值域【详解】(1)的最小正周期为,所以,即=2,又因为,则,所以.(2)由(1)可知,则,①由得,函数增区间为.②因为,所以.当,即时,函数取得最大值,最大值为.【点睛】本题考查正弦型函数性质单调性,函数的平移变换,函数的值域的应用.属中档题.19、(1)(2)图象见解析【解析】(1)由,得的范围,即可得函数在,上的单调递减区间(2)根据用五点法作函数的图象的步骤和方法,作出函数在,上的图象【小问1详解】因为,令,,解得,,令得:函数在区间,上的单调递减区间为:,【小问2详解】,列表如下:01001描点连线画出函数在一个周期上,的图象如图所示:20、(1)(2)【解析】(1)由于直线与直线平行,所以直线的斜率与直线的斜率相等,所以利用点斜式可求出直线方程,(2)由于直线与直线垂直,所以直线的斜率与直线的斜率乘积等于,从而可求出直线的斜率,再利用点斜式可求出直线方程,【小问1详解】已知直线的斜率为,设直线的斜率为,∵与平行,∴,∴直线的方程为,即直线的方程为,【小问2详解】已知直线的斜率为,设直线的斜率为,∵与垂直,∴,∴,∴直线的方程为,即直线的方程为.21、此商品的最佳售价
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论