版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市洞口四中2024届高一数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则下列结论错误的是()A.的一个周期为 B.的图象关于直线对称C.的一个零点为 D.在区间上单调递减2.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.23.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.如图,在中,点是线段及、的延长线所围成的阴影区域内(含边界)的任意一点,且,则在直角坐标平面上,实数对所表示的区域在直线的右下侧部分的面积是()A. B.C. D.不能求5.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.6.中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期或战国初年.算筹记数的方法是:个位、百位、万位、…上的数按纵式的数码摆出;十位、千位、十万位、…上的数按横式的数码摆出,如可用算筹表示为.这个数字的纵式与横式的表示数码如图所示,则的运算结果用算筹表示为()A. B.C. D.7.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数的定义域是()A.(-1,1) B.C.(0,1) D.9.若tanα=2,则的值为()A.0 B.C.1 D.10.已知函数(,且)的图象恒过点,若角的终边经过点,则的值为()A. B.C. D.11.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.12.已知函数,,若存在,使得,则实数的取值范围是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的最大值为____________14.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.15.化简求值(1)化简(2)已知:,求值16.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知二次函数的图象经过,且不等式对一切实数都成立(1)求函数的解析式;(2)若对任意,不等式恒成立,求实数的取值范围18.化简(1)(2)19.已知向量,1若
,共线,求x的值;2若,求x的值;3当时,求与夹角的余弦值20.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程21.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围22.某学校对高一某班的名同学的身高(单位:)进行了一次测量,将得到的数据进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.(1)求直方图中的值,估计全班同学身高的中位数;(2)若采用分层抽样的方法从全班同学中抽取了名身高在内的同学,再从这名同学中任选名去参加跑步比赛,求选出的名同学中恰有名同学身高在内的概率.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据周期求出f(x)最小正周期即可判断A;判断是否等于1或-1即可判断是否是其对称轴,由此判断B;判断否为0即可判断C;,根据复合函数单调性即可判断f(x)单调性,由此判断D.【详解】函数,最小正周期为故A正确;,故直线不是f(x)的对称轴,故B错误;,则,∴C正确;,∴f(x)在上单调递减,故D正确.故选:B.2、B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图3、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.4、A【解析】由点是由线段及、的延长线所围成的阴影区域内(含边界)的任意一点,作的平行线,把中、所满足的不等式表示出来,然后作出不等式组所表示的可行域,并计算出可行域在直线的右下侧部分的面积即可.【详解】如下图,过作,交的延长线于,交的延长线于,设,,,,则,所以,得,所以.作出不等式组对应的可行域,如下图中阴影部分所示,故所求面积为,故选:A.【点睛】本题考查二元一次不等式组与平面区域的关系,考查转化思想,是难题.解决本题的关键是建立、的不等式组,将问题转化为线性规划问题求解.5、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题6、A【解析】先利用指数和对数运算化简,再利用算筹表示法判断.【详解】因为,用算筹记数表示为,故选:.7、A【解析】利用充分必要条件的定义判断.【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A8、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B9、B【解析】将目标是分子分母同时除以,结合正切值,即可求得结果.【详解】==.故选:【点睛】本题考查齐次式的化简和求值,属基础题.10、A【解析】令指数函数的指数为零即可求出指数型函数过定点的坐标,再根据三角函数的定义计算可得;【详解】解:因为函数(,且),令,即时,所以函数恒过定点,又角的终边经过点,所以,故选:A11、C【解析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.12、D【解析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可【详解】当时,,即,则的值域为[0,1],当时,,则的值域为,因为存在,使得,则若,则或,得或,则当时,,即实数a的取值范围是,A,B,C错,D对.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】利用二倍角公式将化为,利用三角函数诱导公式将化为,然后利用二次函数的性质求最值即可【详解】因为,所以当时,取到最大值.【点睛】本题考查了三角函数化简与求最值问题,属于中档题14、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%15、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.16、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)观察不等式,令,得到成立,即,以及,再根据不等式对一切实数都成立,列式求函数的解析式;(2)法一,不等式转化为对恒成立,利用函数与不等式的关系,得到的取值范围,法二,代入后利用平方关系得到,恒成立,再根据参变分离,转化为最值问题求参数的取值范围.【详解】(1)由题意得:①,因为不等式对一切实数都成立,令,得:,所以,即②由①②解得:,且,所以,由题意得:且对恒成立,即对恒成立,对③而言,由且,得到,所以,经检验满足,故函数的解析式为(Ⅱ)法一:二次函数法,由题意,对恒成立,可转化为,对恒成立,整理为对恒成立,令,则有,即,解得,所以的取值范围为法二,利用乘积的符号法则和恒成立命题求解,由①得到,,对恒成立,可转化为对恒成立,得到对恒成立,平方差公式展开整理,即即或对恒成立,即或即,或,即或,所以的取值范围为【点睛】本题考查求二次函数的解析式,不等式恒成立求参数的取值范围,重点考查函数,不等式与方程的关系,转化与变形,计算能力,属于中档题型.18、(1)(2)【解析】三角换元之后,逆用和差角公式即可化简【小问1详解】【小问2详解】19、(1);(2);(3)【解析】(1)根据题意,由向量平行的坐标公式可得,解可得的值,即可得答案;(2)若,则有,利用数量积的坐标运算列方程,解得的值即可;(3)根据题意,由的值可得的坐标,由向量的坐标计算公式可得和的值,结合,计算可得答案【详解】根据题意,向量,,若,则有,解可得若,则有,又由向量,,则有,即,解可得.根据题意,若,则有,,【点睛】本题主要考查两个向量共线、垂直的性质,两个向量坐标形式的运算,两个向量夹角公式的应用,属于中档题20、(1);(2)【解析】(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由,得,∴与的交点为.设与直线平行的直线为,则,∴.∴所求直线方程为.(2)设与直线垂直的直线为,则,解得∴所求直线方程为.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-121、(1)(2)【解析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单调递增,在上单调递减,且当时,由正弦函数图象可知,解得,故实数的取值范围是22、(1),中位数为(2)【解析】(1)利用频率分布直方图中所有矩形的面积之和为可求得的值,设中位数为,利用中位数左边的矩形面积之和为列等式可求得的值;(2)分析可知所抽取的名学生,身高在的学生人数为,分别记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度钢材品牌授权及合作推广合同3篇
- 二零二五版户外灯具打胶制作合同范本3篇
- 二零二五版建筑材料租赁与资金支付合同3篇
- 二零二五版消防管道材料买卖合同范本3篇
- 二零二五版空压机租赁与租赁期满设备回收合同3篇
- 二零二五版文化旅游项目开发合作购销合同文化融合3篇
- 二零二五版股票期权授予及解约条款合同书3篇
- 二零二五年度电脑系统集成与售后全面保修合同3篇
- 2025年厂房维修保养与安全责任合同3篇
- 2025版冷冻食品储藏租赁合同范本3篇
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 寒假作业(试题)2024-2025学年五年级上册数学 人教版(十二)
- 银行信息安全保密培训
- 市政道路工程交通疏解施工方案
- 2024年部编版初中七年级上册历史:部分练习题含答案
- 拆迁评估机构选定方案
- 床旁超声监测胃残余量
- 上海市松江区市级名校2025届数学高一上期末达标检测试题含解析
- 综合实践活动教案三上
- 《新能源汽车电气设备构造与维修》项目三 新能源汽车照明与信号系统检修
- 2024年新课标《义务教育数学课程标准》测试题(附含答案)
评论
0/150
提交评论