版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市娄星区2024届高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.如图正方体,棱长为1,为中点,为线段上的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是当时,为四边形;当时,为等腰梯形;当时,与交点R满足;当时,为六边形;当时,的面积为A. B.C. D.2.已知,那么()A. B.C. D.3.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为A. B.C. D.4.设集合,,则A. B.C. D.5.已知,则()A. B.C. D.6.已知全集,集合,,则()A. B.C. D.7.已知定义在上的函数满足,则()A. B.C. D.8.已知函数的图像如图所示,则A. B.C. D.9.设,且,则的最小值是()A. B.8C. D.1610.已知,,,则()A. B.C. D.11.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为A B.C. D.12.某同学用“五点法”画函数在一个周期内的简图时,列表如下:0xy0200则的解析式为()A. B.C D.二、填空题(本大题共4小题,共20分)13.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n,则的值为___________.14.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________15.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________16.已知且,函数的图象恒经过定点,正数、满足,则的最小值为____________.三、解答题(本大题共6小题,共70分)17.已知定义在上的函数为常数).(1)求的奇偶性;(2)已知在上有且只有一个零点,求实数a的值.18.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域19.设函数(1)写出函数的最小正周期及单调递减区间;(2)当时,函数的最大值与最小值的和为,求不等式的解集20.某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率21.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.(1)求证A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.22.已知函数(为常数),在时取得最大值2.(1)求的解析式;(2)求函数在上单调区间和最小值.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由已知根据的不同取值,分别作出不同情况下的截面图形,利用数形结合思想能求出结果【详解】当时,如图,是四边形,故正确当时,如图,为等腰梯形,正确;当时,如图,由三角形与三角形相似可得,由三角形与三角形相似可得,,正确当时,如图是五边形,不正确;当时,如图是菱形,面积为,正确,正确的命题为,故选D【点睛】本题主要考查正方体的截面,意在考查空间想象能力,解题时要认真审题,注意数形结合思想的合理运用,是中档题2、B【解析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【详解】因为在单调递增,,故,即,而,故.故选:B.3、A【解析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可.详解:由题意得扇形的半径为:又由扇形面积公式得该扇形的面积为:.故选:A.点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.4、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.5、A【解析】利用诱导公式及正弦函数的单调性可判断的大小,利用正切函数的单调性可判断的范围,从而可得正确的选项.【详解】,,因为,故,而,因为,故,故,综上,,故选:A6、D【解析】先求得全集U和,根据补集运算的概念,即可得答案.【详解】由题意得全集,,所以.故选:D7、B【解析】分别令,,得到两个方程,解方程组可求得结果【详解】∵,∴当时,,①,当时,,②,,得,解得故选:B8、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题9、B【解析】转化原式为,结合均值不等式即得解【详解】由题意,故则当且仅当,即时等号成立故选:B10、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒11、B【解析】由题意可知,由在上为增函数,得,选B.12、D【解析】由表格中的五点,由正弦型函数的性质可得、、求参数,即可写出的解析式.【详解】由表中数据知:且,则,∴,即,又,可得.∴.故选:D.二、填空题(本大题共4小题,共20分)13、【解析】由题可知是方程的两个不同实根,根据韦达定理可求出.【详解】由题可知是方程的两个不同实根,则,.故答案为:.14、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:15、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.16、9【解析】由指数函数的性质可得函数的图象恒经过定点,进而可得,然后利用基本不等式中“1”的妙用即可求解.【详解】解:因为函数的图象恒经过定点,所以,又、为正数,所以,当且仅当,即时等号成立,所以的最小值为9.故答案为:9.三、解答题(本大题共6小题,共70分)17、(1)偶函数,证明见解析,(2)【解析】(1)利用定义判断函数的奇偶性;(2)利用该函数的对称性,数形结合得到实数a的值.【详解】(1)函数的定义域为R,,即,∴为偶函数,(2)y=f(x)的图象关于y轴对称,由题意知f(x)=0只有x=0这一个零点,把(0,0)代入函数表达式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,当a=1时,在上单调递增,∴此时显然符合条件;当a=﹣3时,,,即,即在上存在零点,知f(x)至少有三个根,不符合所以,符合条件的实数a的值为1【点睛】本题主要考查函数零点的概念,要注意函数的零点不是点,而是函数f(x)=0时的x的值,属于中档题18、(1);(2).【解析】(1)由函数图象顶点求出,再根据周期求出,根据点五点中的求出,即可得函数解析式;(2)先根据平移得出,由,得出,再根据三角函数图形及性质即可求出值域【详解】(1)由题设图象可知,∵周期,又,∴,∵过点,∴,即,∴,即∵,∴,故函数的解析式为;(2)由题意可知,∵,∴,∴,故,∴在上的值域为【点睛】本题主要考查由的部分图象求解析式,以及求三角函数的值域的应用,属于中档题.19、(1)最小正周期为;递减区间为:;(2)【解析】(1)化函数为正弦型函数,求出它的最小正周期和单调递减区间;(2)根据时求得的最大值和最小值,由此求得的值,再求不等式的解集【详解】(1),∴,令,∴,∴函数的递减区间为:(2)由得:,∴,,∴,∴,∴,又,∴不等式的解集为【点睛】方法点睛:三角函数的一般性质研究:1.周期性:根据公式可求得;2.单调性:令,解出不等式,即可求出函数的单调递增区间;令,解出不等式,即可求出函数的单调递减区间.20、(1)(2)【解析】(1)分在第1个过程中,1或2位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的概率公式计算可得;(2)首先求出在第1个过程中,3位质检员检验结果均为不合格的概率,再求出产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,最后根据互斥事件的概率公式计算可得;【小问1详解】解:记事件A为“产品需要进行第2个过程”在第1个过程中,1位质检员检验结果为合格的概率,在第1个过程中,2位质检员检验结果为合格的概率,故【小问2详解】解:记事件B为“产品不可以出厂”在第1个过程中,3位质检员检验结果均为不合格概率,产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,故21、(1)证明见解析(2)【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD;(2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案.【小问1详解】证明:平面,,又,,平面,,又平面,,且,,平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料采购合同的签订日期
- 高效执行劳务代理合同
- 网络电商合作合同编写
- 食堂采购合同深度报道解读
- 个人购销合同的赔偿问题
- 健身房会员营销服务合同
- 股东合作协议的签订与履行注意事项
- 购车转让协议合同样本
- 洗衣服务合同价格
- 煤炭销售居间条款
- 贵州省铜仁市2023-2024学年高一上学期期末考试 生物 含解析
- 军队文职(新闻专业)招聘考试(重点)题库200题(含答案解析)
- 药学概论-第八章-药事管理学
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 2024-2030年中国建筑设计产业应用现状与发展研究分析报告
- 大部分分校:地域文化形考任务三-国开(CQ)-国开期末复习资料
- 2024年国家保密培训
- 中国当代文学专题-002-国开机考复习资料
- 2024-2025学年北师大版九年级上册数学期末能力提升训练附答案
- 2024年全新初二生物上册期末试卷及答案(人教版)
- 大学生心理健康与发展学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论