版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省2023-2024学年高一数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.C. D.2.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.3.已知集合,则(
)A. B.C. D.4.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.26.已知,,,则的大小关系是()A. B.C. D.7.下列直线中,倾斜角为45°的是()A. B.C. D.8.已知,且满足,则值A. B.C. D.9.将函数的图象向左平移个单位后,所得图象对应的函数是()A. B.C. D.10.函数在一个周期内的图像如图所示,此函数的解析式可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,某化学实验室的一个模型是一个正八面体(由两个相同的正四棱锥组成,且各棱长都相等)若该正八面体的表面积为,则该正八面体外接球的体积为___________;若在该正八面体内放一个球,则该球半径的最大值为___________.12.函数的零点个数为___13.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________14.若函数在区间上为增函数,则实数的取值范围为______.15.如下图所示的正四棱台的上底面边长为2,下底面边长为8,高为3216.命题,,则为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.18.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)19.筒车是我国古代发哪的一种水利灌溉工具,因其经济环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中描绘了筒车的工作原理.如图1是一个半径为R(单位:米),有24个盛水筒的筒车,按逆时针方向匀速旋转,转一周需要120秒,为了研究某个盛水筒P离水面高度h(单位,米)与时间t(单位:秒)的变化关系,建立如图2所示的平面直角坐标系xOy.已知时P的初始位置为点(此时P装满水).(1)P从出发到开始倒水入槽需要用时40秒,求此刻P距离水面的高度(结果精确到0.1);(2)记与P相邻的下一个盛水筒为Q,在简车旋转一周的过程中,求P与Q距离水面高度差的最大值(结果精确到0.1)参考数据:,,,20.设全集,已知函数的定义域为集合A,函数的值域为集合B.(1)求;(2)若且,求实数a的取值范围.21.(1)化简:(2)求值:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意可得,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则可得到一个棱长为2的小正四面体,该小正四面体的高为,且由正四面体的性质可知,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心是重合的,所以小正四面体的中心到底面的距离是,正四面体的中心到底面的距离是,所以可知正四面体的高的最小值为,故选择C考点:几何体的体积2、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.3、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题4、B【解析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.5、A【解析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.6、A【解析】利用对数函数和指数函数的性质求解【详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A7、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C8、C【解析】由可求得,然后将经三角变换后用表示,于是可得所求【详解】∵,∴,解得或∵,∴∴故选C【点睛】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力9、D【解析】根据图像平移过程,写出平移后的函数解析式即可.【详解】由题设,.故选:D10、A【解析】根据图象,先确定以及周期,进而得出,再由求出,即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】由已知求得正八面体的棱长为,进而求得,即知外接球的半径,进而求得体积;若球O在正八面体内,则球O半径的最大值为O到平面的距离,证得平面,再利用相似可知,即可求得半径.【详解】如图,记该八面体为,O为正方形的中心,则平面设,则,解得.在正方形中,,则在直角中,知,即正八面体外接球的半径为故该正八面体外接球的体积为.若球O在正八面体内,则球O半径的最大值为O到平面的距离.取的中点E,连接,,则,又,,平面过O作于H,又,,所以平面,又,,则,则该球半径的最大值为.故答案为:,12、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.13、【解析】先求得,然后利用列举法求得正确答案.【详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:14、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:15、6【解析】如下图所示,O'B'=2,OM=216、,【解析】由全称命题的否定即可得解.【详解】因为命题为全称命题,所以为“,”.故答案为:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函数即可解得,需要检验;(Ⅱ)由得,进而得,令,得,结合的范围求解即可.试题解析:(Ⅰ)经检验成立.(Ⅱ).,设设..当时,成立.当时,成立.当时,不成立,舍去.综上所述,实数的取值范围是.18、(1)见解析;(2)见解析.【解析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.19、(1)m(2)m【解析】(1)根据题意P从出发到开始倒水入槽用时40秒,可知线段OA按逆时针方向旋转了,由,可求圆的半径,由题意可知以OA为终边的角为,由此即可求出P距离水面的高度;(2)由题意可知P转动的角速度为rad/s,易知P开始转动t秒后距离水面的高度的解析式,设P,Q两个盛水筒分别用点B,C表示,易知,点C相对于点B始终落后rad,求出Q距离水面的高度,可得则P,Q距离水面的高度差,再根据三角函数的性质,即可求出结果.【小问1详解】解:由于筒车转一周需要120秒,所以P从出发到开始倒水入槽的40秒,线段OA按逆时针方向旋转了,因为A点坐标为,得,以OA为终边的角为,所以P距离水面的高度m【小问2详解】解:由于筒车转一周需要120秒,可知P转动的角速度为rad/s,又以OA为终边的角为,则P开始转动t秒后距离水面的高度,如图,P,Q两个盛水筒分别用点B,C表示,则,点C相对于点B始终落后rad,此时Q距离水面的高度则P,Q距离水面的高度差,利用,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预付款资产转让
- 质量问题先行赔付
- 混凝土供应协议
- 财务咨询服务协议样本
- 服务改进方案合同
- 校园印刷购销合同
- 鸭毛购销合同
- 诚信为本杜绝旷工
- 严守校规我的承诺
- 井位建设合同范本
- 手术患者血糖控制方案
- 2023年医科医学计算机应用题库
- (正式版)SHT 3070-2024 石油化工管式炉钢结构设计规范
- 有限元分析实验报告
- Unit2Whattimedoyougotoschool?大单元整体教学设计人教版七年级英语下册
- JTG F80-1-2004 公路工程质量检验评定标准 第一册 土建工程
- 浙江科学技术出版社小学五年级下册综合实践活动完全教案(教学计划-进度计划-共14节课时)新疆有
- 四川音乐学院附属中等音乐学校辅导员招聘考试真题2023
- 浙江省台州市椒江区2023-2024学年四年级上学期期末科学试卷
- 第1课《北京的春节》课件 2023-2024学年统编版(五四学制)语文六年级下册
- 2024版国开电大法律事务专科《民法学(1)》期末考试总题库
评论
0/150
提交评论