黑龙江省哈尔滨市第24中学2023-2024学年数学高一上期末考试模拟试题含解析_第1页
黑龙江省哈尔滨市第24中学2023-2024学年数学高一上期末考试模拟试题含解析_第2页
黑龙江省哈尔滨市第24中学2023-2024学年数学高一上期末考试模拟试题含解析_第3页
黑龙江省哈尔滨市第24中学2023-2024学年数学高一上期末考试模拟试题含解析_第4页
黑龙江省哈尔滨市第24中学2023-2024学年数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市第24中学2023-2024学年数学高一上期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件2.在中,下列关系恒成立的是A. B.C. D.3.已知,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若集合,,则A. B.C. D.5.计算A.-2 B.-1C.0 D.16.下列函数既不是奇函数,也不是偶函数,且在上单调递增是A. B.C. D.7.若直线与互相平行,则()A.4 B.C. D.8.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.10.一个袋中有个红球和个白球,现从袋中任取出球,然后放回袋中再取出一球,则取出的两个球同色的概率是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调增区间为________12.函数的定义域为_______________13.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________14.函数满足,则值为_____.15.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.16.若集合,则满足的集合的个数是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为第三象限角,且.(1)化简;(2)若,求的值.18.(1)已知求的值(2)已知,且为第四象限角,求的值.19.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.20.已知函数的部分图像如图所示.(1)求函数的解析式;(2)若函数在上取得最小值时对应的角度为,求半径为2,圆心角为的扇形的面积.21.已知,计算:(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法

定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件

等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法

集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件2、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题3、A【解析】化简得,再利用充分非必要条件定义判断得解.【详解】解:.因为“”是“”的充分非必要条件,所以“”是“”的充分非必要条件.故选:A4、C【解析】因为集合,,所以A∩B=x故选C.5、C【解析】.故选C.6、C【解析】是偶函数,是奇函数,和既不是奇函数也不是偶函数,在上是减函数,是增函数,故选C7、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.8、D【解析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.9、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.10、D【解析】从袋中任取出球,然后放回袋中再取出一球,共有种方法,其中取出的两个球同色的取法有种,因此概率为选D.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.12、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.13、【解析】设即的坐标为14、【解析】求得后,由可得结果.【详解】,,.故答案为:.15、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:16、4【解析】求出集合,由即可求出集合的个数【详解】因为集合,,因为,故有元素0,3,且可能有元素1或2,所以或或或故满足的集合的个数为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)﹒【解析】(1)利用三角函数的诱导公式即可化简;(2)根据求出sinα,=-cosα=即可求得﹒【小问1详解】【小问2详解】∵,∴,又为第三象限角,∴,∴18、(1);(2).【解析】(1)由诱导公式得,进而由,将所求的式子化为二次齐次式,进而得到含的式子,从而得解(2)由,结合角的范围可得解.【详解】(1)由,得,所以,.(2),所以,又为第四象限角,所以,所以.19、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.20、(1).(2).【解析】(1)由图象观察,最值求出,周期求出,特殊点求出,所以;(2)由题意得,所以扇形面积试题解析:(1)∵,∴根据函数图象,得.又周期满足,∴.解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论