河南省郑州市中牟县2023-2024学年高一上数学期末学业质量监测模拟试题含解析_第1页
河南省郑州市中牟县2023-2024学年高一上数学期末学业质量监测模拟试题含解析_第2页
河南省郑州市中牟县2023-2024学年高一上数学期末学业质量监测模拟试题含解析_第3页
河南省郑州市中牟县2023-2024学年高一上数学期末学业质量监测模拟试题含解析_第4页
河南省郑州市中牟县2023-2024学年高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省郑州市中牟县2023-2024学年高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若直线l1∥l2,且l1的倾斜角为45°,l2过点(4,6),则l2还过下列各点中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)2.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数3.当时,在同一平面直角坐标系中,函数与的图象可能为A. B.C. D.4.将函数,且,下列说法错误的是()A.为偶函数 B.C.若在上单调递减,则的最大值为9 D.当时,在上有3个零点5.化简的值是A. B.C. D.6.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.7.若,则下列关系式一定成立的是()A. B.C. D.8.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.9.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面10.与圆关于直线对称的圆的方程为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,则的最小值为_______________.12.已知,若,则_______;若,则实数的取值范围是__________13.______14.若,,则=______;_______15.若,则的定义域为____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.17.如图,为等边三角形,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.18.已知,命题:,;命题:,.(1)若是真命题,求的最大值;(2)若是真命题,是假命题,求的取值范围.19.已知直线与圆相交于点和点(1)求圆心所在的直线方程;(2)若圆心的半径为1,求圆的方程20.设非空集合P是一元一次方程的解集.若,,满足,,求的值.21.命题p:方程x2+x+m=0有两个负数根;命题q:任意实数x∈R,mx2-2mx+1>0成立;若p与q都是真命题,求m取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由题意求出得方程,将四个选项逐一代入,即可验证得到答案.【详解】由题直线l1∥l2,且l1的倾斜角为45°,则的倾斜角为45,斜率由点斜式可得的方程为即四个选项中只有B满足方程.即l2还过点(-2,0).故选B【点睛】本题考查直线方程的求法,属基础题.2、C【解析】根据基本函数单调性直接求解.【详解】因为,所以函数在是增函数,故选:C3、C【解析】当时,单调递增,单调递减故选4、C【解析】先求得,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】,,所以,为偶函数,A选项正确.,B选项正确.,若在上单调递减,则,,由于,所以,所以的最大值为,的最大值为,C选项错误.当时,,,当时,,所以D选项正确.故选:C5、B【解析】利用终边相同角同名函数相同,可转化为求的余弦值即可.【详解】.故选B.【点睛】本题主要考查了三角函数中终边相同的角三角函数值相同及特殊角的三角函数值,属于容易题.6、D【解析】利用扇形的面积公式即可求面积.【详解】由题设,,则扇形的面积为.故选:D7、A【解析】判断函数的奇偶性以及单调性,由此可判断函数值的大小,即得答案.【详解】由可知:,为偶函数,又,知在上单调递减,在上单调递增,故,故选:A.8、C【解析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.9、D【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面故选D.10、A【解析】设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.12、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,13、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.14、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;15、【解析】使表达式有意义,解不等式组即可.【详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明略(2)【解析】(Ⅰ)要证平面,由已知平面,已经有,因此在直角梯形中证明即可,通过计算得,而是中点,则有;(Ⅱ)PB与平面ABCD所成的角是,下面关键是作出PB与平面PAE所成的角,由(Ⅰ)作,分别与相交于,连接,则是PB与平面PAE所成的角,由这两个角相等,可得,同样在直角梯形中可计算出,也即四棱锥P-ABCD的高,体积可得.另外也可建立空间直角坐标系,通过空间向量法求得结论,第(Ⅱ)小题中关键是求点的坐标,注意这里直线与平面所成的角相等转化为直线与平面的法向量的夹角相等试题解析:解法1(Ⅰ如图(1)),连接AC,由AB=4,,是的中点,所以所以而内的两条相交直线,所以CD⊥平面PAE(Ⅱ)过点B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE所成的角,且由知,为直线与平面所成的角由题意,知因为所以由所以四边形是平行四边形,故于是在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与所成的角和PB与所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面积为,所以四棱锥的体积为.考点:线面垂直的判断,棱锥的体积17、(1)见解析(2)见解析【解析】(Ⅰ)取的中点,连结,由三角形中位线定理可得,,结合已知,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(Ⅱ)由线面垂直的性质可得平面,得到,再由为等边三角形,得,结合线面垂直的判定可得平面,再由面面垂直的判定可得面面【详解】(Ⅰ)证明:取的中点,连结∵在中,,∵,∴,∴四边形为平行四边形∴又∵平面∴平面(Ⅱ)证:∵面,平面,∴,又∵为等边三角形,∴,又∵,∴平面,又∵,∴面,又∵面,∴面面18、(1)1;(2).【解析】(1)根据题意可得,为真,令,只需即可求解.(2)根据题意可得与一真一假,当是真命题时,可得或,分别求出当真假或假真时的取值范围,最后取并集即可求解.【详解】解:(1)若命题:,为真,∴则令,,又∵,∴,∴的最大值为1.(2)因为是真命题,是假命题,所以与一真一假,当是真命题时,,解得或,当是真命题,是假命题时,有,解得;当是假命题,是真命题时,有,解得;综上,的取值范围为.19、(1)x-y=0(2)【解析】本试题主要是考查了直线与圆的位置关系的运用,.以及圆的方程的求解(1)PQ中点M(,),,所以线段PQ的垂直平分线即为圆心C所在的直线的方程:(2)由条件设圆的方程为:,由圆过P,Q点得得到关系式求解得到.则或故圆的方程为20、答案见解析【解析】由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论