湖南省怀化市中方一中2023年数学高一上期末检测模拟试题含解析_第1页
湖南省怀化市中方一中2023年数学高一上期末检测模拟试题含解析_第2页
湖南省怀化市中方一中2023年数学高一上期末检测模拟试题含解析_第3页
湖南省怀化市中方一中2023年数学高一上期末检测模拟试题含解析_第4页
湖南省怀化市中方一中2023年数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省怀化市中方一中2023年数学高一上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,直线的斜率是()A. B.C. D.2.函数的最小正周期是A. B.C. D.3.已知函数,则该函数的零点位于区间()A. B.C. D.4.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.25.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.6.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为()A B.C. D.7.命题“,使得”的否定是()A., B.,C., D.,8.已知定义在上的函数满足,则()A. B.C. D.9.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果,且,则化简为_____.12.在区间上随机地取一个实数,若实数满足的概率为,则________.13.已知,若,则________14.已知直线与直线的倾斜角分别为和,则直线与的交点坐标为__________15.若函数有4个零点,则实数a的取值范围为___________.16.已知函数是幂函数,且过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为4,且满足(1)求的解析式(2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由18.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.19.已知(1)化简;(2)若,求值20.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.21.已知函数.(1)若不等式对于一切实数恒成立,求实数的取值范围;(2)若,解关于的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.2、D【解析】分析:直接利用周期公式求解即可.详解:∵,,∴.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.3、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题4、D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题5、C【解析】根据给定图象求出函数的解析式,再平移,代入计算作答.【详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C6、B【解析】利用柱体体积公式求体积.【详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积.故选:B7、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B8、B【解析】分别令,,得到两个方程,解方程组可求得结果【详解】∵,∴当时,,①,当时,,②,,得,解得故选:B9、C【解析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.10、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:12、1【解析】利用几何概型中的长度比即可求解.【详解】实数满足,解得,,解得,故答案为:1【点睛】本题考查了几何概率的应用,属于基础题.13、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:114、【解析】因为直线与直线的倾斜角分别为和,所以,联立与可得,,直线与的交点坐标为,故答案为.15、【解析】将函数转化为方程,作出的图像,结合图像分析即可.【详解】令得,作出的函数图像,如图,因为有4个零点,所以直线与的图像有4个交点,所以.故答案为:16、【解析】由题意,设代入点坐标可得,计算即得解【详解】由题意,设,过点故,解得故则故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;【解析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果;(2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果.【小问1详解】解:因为的最小正周期为4,所以因为满足,所以的图象关于点对称,所以,所以,即,又,所以所以的解析式为【小问2详解】解:由,可得当时,,在同一坐标系中作出与的大致图象,如图所示,当时,,再结合的单调性可知点的横坐标即方程的根,解得结合图象可知存在实数满足,的取值范围是18、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②-a2<x+4<a2时,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2时,f(x+4)=(x+4)-2a2>x+2a2≥f(x),综上知,当-1<a<1时,为上的增长函数,所以实数a的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.19、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故的值为.20、(1)证明见解析;(2);(3).【解析】(1)利用判断(2),化简,通过判别式小于0,求出的范围即可(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可【详解】(1),(2)由,故;(3)由,即对任意都成立当时,;当时,;当时,综上:【点睛】思路点睛:本题考查函数新定义,重点是理解新定义的意义,本题第三问的关键是代入定义后转化为不等式恒成立问题,利用参变分离后求的取值范围,再根据,根据函数的单调性,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论