第01讲 投影与视图(知识解读+真题演练+课后巩固)(原卷版)_第1页
第01讲 投影与视图(知识解读+真题演练+课后巩固)(原卷版)_第2页
第01讲 投影与视图(知识解读+真题演练+课后巩固)(原卷版)_第3页
第01讲 投影与视图(知识解读+真题演练+课后巩固)(原卷版)_第4页
第01讲 投影与视图(知识解读+真题演练+课后巩固)(原卷版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第01讲投影与视图以分析实际例子为背景,认识投影和视图的基本概念和基本性质;

2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;

3.懂得运用投影知识解决有关的实际问题。4.通过制作立体模型的学习,在实际动手中进一步加深对投影知识的认识,在实践活动中培养实际操作能力.知识点1平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:

(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.

(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.

2.物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.

(2)在同一时刻,不同物体的物高与影长成正比例.

即:.

利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.

注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.

注意:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.知识点2中心投影若一束光线是从一点发出的,像这样的光线照射在物体上所形成的投影,叫做中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.

(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.

在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.

注意:

光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.

知识点3平行投影与中心投影的区别与联系联系:

(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.

(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.

2.区别:

(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.

(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.

注意:

在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.

知识点4正投影正投影的定义:

如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.

(1)线段的正投影分为三种情况.如图所示.

①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;

②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;

③线段AB垂直于投影面P时,它的正投影是一个点.

(2)平面图形正投影也分三种情况,如图所示.

①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;

②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.

③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.(3)立体图形的正投影.

物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.注意:

(1)正投影是特殊的平行投影,它不可能是中心投影.

(2)由线段、平面图形和立体图形的正投影规律,可以识别或画出物体的正投影.

(3)由于正投影的投影线垂直于投影面,一个物体的正投影与我们沿投影线方向观察这个物体看到的图象之间是有联系的.知识点5三视图的概念视图

从某一角度观察一个物体时,所看到的图象叫做物体的一个视图.(2)正面、水平面和侧面

用三个互相垂直的平面作为投影面,其中正对我们的面叫做正面,正面下面的面叫做水平面,右边的面叫做侧面.

(3)三视图

一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.主视图、左视图、俯视图叫做物体的三视图.知识点6三视图之间的关系位置关系

三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(1)所示.

(2)大小关系

三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.

注意:

物体的三视图的位置是有严格规定的,不能随意乱放.三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.知识点7画几何体的三视图画图方法:

画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:

(1)确定主视图的位置,画出主视图;

(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;

(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.

几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.

注意:

画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.

知识点8由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.注意:

由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.【题型1平行投影】【典例1】(2023春•和平区期末)如图,已知太阳光线AC和DE是平行的,在同一时刻,如果将两根高度相同的木杆竖直插在地面上,那么在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC≌△DFE的依据是()​A.SAS B.AAS C.SSS D.ASA【变式1-1】(2023•衡水模拟)如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是()​A.①②③④⑤B.②④①③⑤ C.⑤④①③② D.⑤③①④②【变式1-2】(2022秋•扶风县期末)在一个充满阳光的上午,文亮同学拿着一块矩形木板在阳光下做投影实验,他摆动矩形木板,观察投影的变化,矩形木板在地面上形成的投影不可能是()A. B. C. D.【变式1-3】(2022秋•广宗县期末)如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.【典例2】(2022秋•临渭区期末)如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB的影子长时,同时测量出EF=6m,计算DE的长.【变式2-1】(2022秋•榆阳区校级期末)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.【变式2-2】(2023•市北区开学)甲、乙两栋楼的位置如图所示,甲楼AB高16米.当地中午12时,物高与影长的比是1:.(1)如图1,当地中午12时,甲楼的影子刚好不落到乙楼上,则两楼间距BD的长为米.(2)当地下午14时,物高与影长的比是1:2.如图2,甲楼的影子有一部分落在乙楼上,求落在乙楼上的影子DE的长.【变式2-3】(2022秋•榕城区期末)如图,某数学兴趣小组要测量学校旗杆的高度,在某一时刻测得1m长的竹竿竖直放置时影长为1.5m,在同时刻测量旗杆的影长时,因旗杆靠近一教学楼,影子不全落在地面上,有一部分落在墙上,测得落在地面上的影长为18m,留在墙上的影高为3m,求旗杆的高度.【题型2中心投影】【典例3】(2023•丛台区三模)如图,球在灯泡的照射下形成了影子,当球竖直向下运动时,球的影子的大小变化是()A.越来越小 B.越来越大 C.大小不变 D.不能确定【变式3-1】(2023•婺城区模拟)下列是描述小明和小颖在同一盏路灯下影子的图片,其中合理的是()A. B. C. D.【变式3-2】(2022秋•青山区期末)如图,某同学下晚自习后经过一路灯回寝室,他从A处背着灯柱方向走到B处,在这一过程中他在该路灯灯光下的影子()A.由长逐渐变短 B.由短逐渐变长 C.先变长后变短 D.先变短后变长【变式3-3】(2022秋•大东区期末)下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子 B.中午用来乘凉的树影 C.上午人走在路上的影子 D.阳光下旗杆的影子【典例4】(2022秋•浦江县期末)如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.5m B.4.5m C.4m D.3m【变式4-1】(2023•渠县校级模拟)一块三角形板ABC,BC=12cm,AC=10cm,测得BC边的中心投影B1C1长为24cm,则AC边的中心投影A1C1的长为()A.24cm B.20cm C.15cm D.5cm【变式4-2】(2023•越秀区校级二模)如图,在平面直角坐标系中,点光源位于P(2,2)处,木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的影长CD为.【变式4-3】(2022秋•高新区期末)如图,平面直角坐标系中,一点光源位于A(﹣3,4),线段BC的两个端点坐标分别为B(﹣2,2)与C(0,2),则线段BC在x轴上的影子B′C′的长度为.【题型3中心投影与相似】【典例5】(2022秋•宝安区校级期中)如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,求小方行走的路程.【变式5-1】(2023•三水区校级开学)如图,在平面直角坐标系中,点P(4,3)是一个光源,CD为木杆AB在x轴上的投影,A(0,1),B(6,1),过点P作PM⊥x轴,垂足为点M,PM交AB于点N,求CD的长.【变式5-2】(2022秋•市北区期末)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一棵大树,它在这个路灯下的影子是MN.(1)在图中画出路灯的位置并用点P表示;(2)在图中画出表示大树的线段MQ.【变式5-3】(2022春•连山区月考)如图,身高1.6m的小王晚上沿箭头方向散步至一路灯下,他想通过测量自己的影长来估计路灯的高度,具体做法如下:先从路灯底部向东走20步到M处,发现自己的影子端点刚好在两盏路灯的中间点P处,继续沿刚才自己的影子走5步到P处,此时影子的端点在Q处.(1)找出路灯的位置.(2)估计路灯的高,并求影长PQ.【题型4视点、视角和盲区】【典例6】(2023春•福田区校级期末)如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED【变式6-1】(2022秋•济南期末)如图,从点D观测建筑物AC的视角是()A.∠ADC B.∠DAB C.∠DCA D.∠DCE【变式6-2】(2022秋•沈河区校级期末)如图,EB为驾驶员的盲区,驾驶员的眼睛点P处与地面BE的距离为1.6米,车头FACD近似看成一个矩形,且满足3FD=2FA,若盲区EB的长度是6米,则车宽FA的长度为()米.A.2 B. C. D.【题型5简单的几何体】【典例7】(2023•嘉鱼县模拟)下列四个几何体中,俯视图与其它三个不同的是()A. B. C. D.【变式7-1】(2023•青海)下列几何体中,主视图、左视图和俯视图都相同的是()A. B. C. D.【变式7-2】(2023•城区二模)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.长方体 B.正方体 C.三棱柱 D.圆柱【变式7-3】(2023•淮安区一模)下面的几何体中,主视图为三角形的是()A. B. C. D.【题型6简单几何体三视图】【典例8】(2023•镇海区一模)如图所示是一个钢块零件,它的左视图是()A. B. C. D.【变式8-1】(2023•内蒙古)由大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.【变式8-2】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A. B. C. D.【变式8-3】(2022秋•鄄城县期末)作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下面四幅图是从上面看到的图形的是()A. B. C. D.【题型7由三视图判断几何体】【典例9】(2023•揭阳开学)用6个同样的小正方体拼成一个立体图形,从上面和正面看到的图形都是,从右面看到的图形是,这个立体图形的形状是下面的图()A. B. C. D.【变式9-1】(2022秋•金凤区校级期末)一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由()个小立方块搭成的.A.6 B.5 C.4 D.3【变式9-2】(2023•黄冈三模)如图的三视图对应的物体是()A. B. C. D.【变式9-3】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A. B. C. D.【题型8作图—三视图】【典例10】(2023•滕州市校级开学)一个由8个小立方块组成的立体图形如图所示,分别画出从它的正面、左面和上面看到的图形.【变式10-1】(2023•光泽县校级开学)下列立体图形从上面、正面和左面看到的形状分别是什么?画一画.【变式10-2】(2022秋•惠山区校级期末)如图是用11块完全相同的小正方体搭成的几何体.(1)请在方格中分别画出它的主视图、左视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和主视图不变,那么最多可以再添加4个小正方体.1.(2023•黄石)如图,根据三视图,它是由()个正方体组合而成的几何体.A.3 B.4 C.5 D.62.(2023•常州)运动场上的颁奖台如图所示,它的主视图是()A. B. C. D.3.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A. B. C. D.4.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A. B. C. D.1.(2023•丰润区二模)如图,光线由上向下照射正五棱柱时的正投影是()A. B. C. D.2.(2022秋•路南区校级期末)正方形在太阳光下的投影不可能是()A.正方形 B.一条线段 C.矩形 D.三角形3.(2023•东洲区模拟)在一间屋子里的屋顶上挂着一盏白炽灯,在它的正下方有一个球,如图所示,下列说法:(1)球在地面上的影子是圆;(2)当球向上移动时,它的影子会增大;(3)当球向下移动时,它的影子会增大;(4)当球向上或向下移动时,它的影子大小不变.其中正确的有()A.0个 B.1个 C.2个 D.3个4.(2022秋•市南区期末)随着光伏发电项目投资成本下降,越来越多的“光伏+”项目正在逐步走进我们的生活.光伏发电不仅能为城市提供清洁能源,还能减少城市污染和能源消耗.如图,长BC=8m、宽AB=1.5m的太阳能电池板与水平面成30°夹角,经过太阳光的正投影,它在水平面所形成的阴影的面积为()A.12m2 B.6m2 C. D.5.(2023•汉南区校级模拟)一个几何体如图水平放置,它的俯视图是()A. B. C. D.6.(2023•柯桥区一模)由6个相同的小正方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.7.(2023•赛罕区二模)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论