版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省小池滨江高级中学2023年高一上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.2.已知f(x)=是R上的减函数,那么a的取值范围是()A.(0,1) B.C. D.3.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.4.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.5.已知函数为偶函数,则A.2 B.C. D.6.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”7.下列所给出的函数中,是幂函数的是A. B.C. D.8.下列命题中正确的是()A. B.C. D.9.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.10.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,,,则___________.12.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________13.已知幂函数经过点,则______14.过点且在轴,轴上截距相等的直线的方程为___________.15.函数的定义域为__________________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.17.已知圆C经过点A(0,0),B(7,7),圆心在直线上(1)求圆C的标准方程;(2)若直线l与圆C相切且与x,y轴截距相等,求直线l的方程18.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值19.已知函数(1)求的单调增区间;(2)当时,求函数最大值和最小值.20.已知函数,其中(1)若的最小值为1,求a的值;(2)若存在,使成立,求a取值范围;(3)已知,在(1)的条件下,若恒成立,求m的取值范围21.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题2、B【解析】要使函数在上为减函数,则要求①当,在区间为减函数,②当时,在区间为减函数,③当时,,综上①②③解不等式组即可.【详解】令,.要使函数在上为减函数,则有在区间上为减函数,在区间上为减函数且,∴,解得.故选:B【点睛】考查根据分段函数的单调性求参数的问题,根据单调性的定义,注意在分段点处的函数值的关系,属于中档题.3、A【解析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.4、B【解析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B5、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D7、B【解析】根据幂函数的定义,直接判定选项的正误,推出正确结论【详解】幂函数的定义规定;y=xa(a为常数)为幂函数,所以选项中A,C,D不正确;B正确;故选B【点睛】本题考查幂函数的定义,考查判断推理能力,基本知识掌握情况,是基础题8、A【解析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.9、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.10、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由已知条件结合所给角的范围求出、,再将展开即可求解【详解】因为,所以,又因为,所以,所以,因为,,所以,因为,所以,所以,故答案为:.【点睛】关键点点睛:本题解题的关键点是由已知角的三角函数值的符号确定角的范围进而可求角的正弦或余弦,将所求的角用已知角表示即.12、1【解析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案.【详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故故答案为:1.13、##0.5【解析】将点代入函数解得,再计算得到答案.【详解】,故,.故答案为:14、或【解析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【点睛】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况15、【解析】由,解得,所以定义域为考点:本题考查定义域点评:解决本题关键熟练掌握正切函数的定义域三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析;(2)【解析】(1)将函数化简为,令,则,求出对称轴,对区间与对称轴的位置关系进行分类讨论求出最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等实根,列出相应的不等式组,求解即可.【详解】(1),令,则,对称轴为:当即时,,当即时,,当时,,所以求函数在上的最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等零点,,解得.【点睛】本题考查动轴定区间分类讨论二次函数最小值,正弦函数的单调性,二次函数的几何性质,属于中档题.17、(1)(x﹣3)2+(y﹣4)2=25(2)yx或x+y+57=0或x+y﹣57=0【解析】(1)设圆心C(a,b),半径为r,然后根据条件建立方程组求解即可;(2)分直线l经过原点、直线l不经过原点两种情况求解即可.【小问1详解】根据题意,设圆心C(a,b),半径为r,标准方程为(x﹣a)2+(y﹣b)2=r2,圆C经过点A(0,0),B(7,7),圆心在直线上,则有,解可得,则圆C的标准方程为(x﹣3)2+(y﹣4)2=25,小问2详解】若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①直线l经过原点,设直线l的方程为y=kx,则有5,解得k,此时直线l的方程为yx;②直线l不经过原点,设直线l的方程为x+y﹣m=0,则有5,解得m=7+5或7﹣5,此时直线l方程为x+y+57=0或x+y﹣57=0;综合可得:直线l的方程为yx或x+y+57=0或x+y﹣57=018、(1)8(2)(3)【解析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的方程为即,有由,解得或圆过定点(3)圆N的方程,即①圆即②②-①得:圆M与圆N相交弦AB所在直线方程为:圆心M(0,6)到直线AB的距离弦长当时,线段AB长度有最小值.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;圆的问题经常应用的性质有垂径定理的应用,切线长定理的应用.19、(1)单调递增区间为;(2),.【解析】(1)利用和差公式和倍角公式把化为,然后可解出答案;(2)求出的范围,然后由正弦函数的知识可得答案.【详解】(1)由可得单调递增区间为(2),即时,即时,20、(1)5(2)(3)【解析】(1)采用换元法,令,并确定的取值范围,化简为关于二次函数后,根据其性质进行计算;(2)将存在,使成立,转化为存在,,求出的最大值列不等式即可;(3)根据第(1)问的信息,将转化为关于的不等式,采用分离参数法,使用基本不等式,求得的取值范围.【小问1详解】令,则,,当时,,解得【小问2详解】存在,使成立,等价于存在,,由(1)可知,,当时,,解得【小问3详解】由(1)知,,则又,则恒成立,等价于恒成立,又,,则等价于即,当且仅当时等号成立21、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度停车场排水系统施工合同规范文本3篇
- 固化剂采购合同6篇
- 编程软件课程设计
- 抗肿瘤新药行业专题
- 脱甲烷塔课程设计
- 2024幼儿园招生工作计划(31篇)
- 算法课的课程设计
- 线上课程设计基本要素
- 算数运算测试java课程设计
- 药剂课程设计报告
- 江苏省期无锡市天一实验学校2023-2024学年英语七年级第二学期期末达标检测试题含答案
- 耕地占补平衡系统课件
- 2022年山东师范大学自考英语(二)练习题(附答案解析)
- 医院工作流程图较全
- NB/T 11431-2023土地整治煤矸石回填技术规范
- 医疗器械集中采购文件(2024版)
- 上海市2024-2025学年高一语文下学期分科检测试题含解析
- 血液透析高钾血症的护理查房
- 佛山市2022-2023学年七年级上学期期末考试数学试题【带答案】
- 使用权资产实质性程序
- 保险公司增额终身寿主讲课件
评论
0/150
提交评论