甘肃省酒泉市瓜州县2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
甘肃省酒泉市瓜州县2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
甘肃省酒泉市瓜州县2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
甘肃省酒泉市瓜州县2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
甘肃省酒泉市瓜州县2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省酒泉市瓜州县2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.2.已知,则的值为A. B.C. D.3.已知函数则的值为()A. B.C.0 D.14.函数f(x)=tan的单调递增区间是()A.(k∈Z) B.(k∈Z)C.(k∈Z) D.(k∈Z)5.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台6.在内,使成立的的取值范围是A. B.C. D.7.已知集合,则A. B.C. D.8.是上的奇函数,满足,当时,,则()A. B.C. D.9.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.210.“,”是“函数的图象关于点中心对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.不等式的解集是___________.(用区间表示)12.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.13.设x、y满足约束条件,则的最小值是________.14.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm215.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知△ABC中,A(2,-1),B(4,3),C(3,-2)(1)求BC边上的高所在直线的一般式方程;(2)求△ABC的面积17.已知定义域为的函数是奇函数.(1)求实数a的值;(2)若不等式在有解,求实数m取值范围.18.如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求证:BC⊥AF;(2)求几何体EF-ABCD的体积19.已知函数fx=-x2(1)求不等式cx(2)当gx=fx-mx在20.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.21.已知函数.(1)判断函数的奇偶性,并说明理由;(2)若实数满足,求的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】利用扇形的面积公式即可求解.【详解】设扇形的半径为,则扇形的面积,解得:,故选:C2、C【解析】利用同角三角函数的基本关系把原式的分母“1”变为sin2α+cos2α,然后给分子分母求除以cos2α,把原式化为关于tanα的关系式,把tanα的值代入即可求出值【详解】因为tanα=3,所以故选C【点睛】本题是一道基础题,考查学生灵活运用同角三角函数间的基本关系化简求值的能力,做题的突破点是“1”的灵活变形3、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D4、B【解析】运用整体代入法,结合正切函数的单调区间可得选项.【详解】由kπ-<2x-<kπ+(k∈Z),得<x<(k∈Z),所以函数f(x)=tan的单调递增区间为(k∈Z).故选:B.【点睛】本题考查正切函数的单调性,属于基础题.5、D【解析】由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台故选D6、C【解析】直接画出函数图像得到答案.【详解】画出函数图像,如图所示:根据图像知.故选:.【点睛】本题考查了解三角不等式,画出函数图像是解题的关键.7、C【解析】分别解集合A、B中的不等式,再求两个集合的交集【详解】集合,集合,所以,选择C【点睛】进行集合的交、并、补运算前,要搞清楚每个集合里面的元素种类,以及具体的元素,再进行运算8、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.9、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D10、A【解析】先求出函数的图象的对称中心,从而就可以判断.【详解】若函数的图象关于点中心对称,则,,所以“,”是“函数的图象关于点中心对称”的充分不必要条件故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据一元二次不等式解法求不等式解集.【详解】由题设,,即,所以不等式解集为.故答案为:12、8100【解析】将代入,化简即可得答案.【详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.13、-6【解析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【点睛】本题考查简单线性规划问题,属中档题14、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.15、##-0.4【解析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)x+5y+3=0;(2)S△ABC=3【解析】求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程,已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积.试题解析:(1)由斜率公式,得kBC=5,所以BC边上的高所在直线方程为y+1=-(x-2),即x+5y+3=0.(2)由两点间的距离公式,得|BC|=,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,所以点A到直线BC的距离d=,故S△ABC=.【点睛】已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积,还可求出三边长借助海伦公式去求;求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程.17、(1);(2).【解析】(1)函数是上的奇函数,利用,注意检验求出的是否满足题意;(2)由(1)得,把不等式在有解转化为在有解,构造函数,利用基本不等式求解即可.【详解】(1)由为上的奇函数,所以,则,检验如下:当,,,则函数为上的奇函数.所以实数a的值.(2)由(1)知,则,由得:,因为,等价于在有解,则,令,设,当且仅当或(舍)取等号;则,所以实数m取值范围.【点睛】关键点睛:把不等式在有解转化为在有解,构造函数出是解决本题的关键.18、(1)详见解析;(2).【解析】(1)推导出FC⊥CD,FC⊥BC,AC⊥BC,由此BC⊥平面ACF,从而BC⊥AF(2)推导出AC=BC=2,AB4,从而AD=BCsin∠ABC=22,由V几何体EF﹣ABCD=V几何体A﹣CDEF+V几何体F﹣ACB,能求出几何体EF﹣ABCD的体积【详解】(1)因为平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四边形CDEF是正方形,所以FC⊥CD,FC⊂平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因为△ACB是腰长为2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因为△ABC是腰长为2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因为DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V几何体EF-ABCD=V几何体A-CDEF+V几何体F-ACB==+==【点睛】本题考查线线垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题19、(1)x∈(2)m≥1【解析】(1)由不等式fx>0的解集为x1<x<2可得x2-bx-c=0的两根是1,2,根据根系数的关系可求b=3和c=-2,代入不等式cx2【详解】(1)由fx>0的解集为x1<x<2,则-x2+bx+c>0的解集为x1<x<2则1+2=b1×2=-c由cx则解集为x∈(2)由gx=-x则3-m2解出m≥1【点睛】本题考查了三个二次的关系,(1)二次函数的图像与x轴交点的横坐标,二次不等解集的端点值,一元二次方程的根是同一个量的不同表现形式;(2)二次函数、二次不等式,二次方程常称作“三个二次”,其中的某类的问题常可以转化为另两类问题加以解决,所以三者的关系密切而重要.其中二次函数是“三个二次”的核心,通过二次函数的图像使它们贯穿一体,使得数形结合思想在此类问题的解决中十分有效20、(1)(2)最大值为,最小值为【解析】(1)根据的定义域列出不等式即可求出;(2)可得,即可求出最值.【小问1详解】的定义域是,,因为的定义域是,所以,解得于是定义域为.【小问2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论