版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京师范大学附属杭州中学2023-2024学年高一数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若α=-2,则α的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.如图,在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,则下列结论错误的是()A.与平面ABC所成的角为 B.平面C.与所成角为 D.3.已知命题“,使”是假命题,则实数的取值范围是()A. B.C. D.4.已知函数在上是增函数,则的取值范围是()A., B.,C., D.,5.已知,,,则,,三者的大小关系是()A. B.C. D.6.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息()元.(参考数据:)A.176 B.100C.77 D.887.若关于的方程在上有实数根,则实数的取值范围是()A. B.C. D.8.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.49.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B.C. D.10.设,,则()A. B.C. D.11.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.12.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.如图,若角的终边与单位圆交于点,则________,________14.已知,,则___________(用a、b表示).15.已知平面,,直线,若,,则直线与平面的位置关系为______.16.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=lnx+2x,若f(x2-4)<2,求实数x的取值范围.18.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.19.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值20.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.21.(1)求值:;(2)求值:;(3)已知,求的值22.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1rad≈57.30°,所以-2rad≈-114.60°,故α的终边在第三象限故选:C.2、A【解析】在A中,∠C1AC是AC1与平面ABC所成的角,从而AC1与平面ABC所成的角为45°;在B中,连结OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1与BB1所成的角,从而AC1与BB1所成的角为45°;在D中,连结OD,则OD∥AC1【详解】由在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1与平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1与平面ABC所成的角为45°,故A错误;在B中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故B正确;在C中,∵CC1∥BB1,∴∠AC1C是AC1与BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1与BB1所成的角为45°,故C正确;在D中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故D正确故选A【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题3、B【解析】原命题等价于恒成立,故即可,解出不等式即可.【详解】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是故选:B4、D【解析】先根据题意建立不等式组,再求解出,最后给出选项即可.【详解】解:因为函数在上是增函数,所以,解得,则故选:D.【点睛】本题考查利用分段函数的单调性求参数范围,是基础题5、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C6、B【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题7、A【解析】当时,令,可得出,可得出,利用函数的单调性求出函数在区间上的值域,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】当时,令,则,可得,设,其中,任取、,则.当时,,则,即,所以,函数在上为减函数;当时,,则,即,所以,函数在上为增函数.所以,,,,则,故函数在上的值域为,所以,,解得.故选:A.8、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D9、A【解析】由题意,设,则,又由,求得,得t值,确定函数的解析式,据此分析可得,即,又由,利用换底公式,求得,结合对数的运算性质分析可得答案【详解】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选A【点睛】本题主要考查了函数的单调性的应用,以及对数的运算性质的应用,其中解答中根据题意,设,求得实数的值,确定出函数的解析式,再利用对数的运算性质求解是解答的关键,着重考查了分析问题和解答问题的能力,以及换元思想的应用,属于中档试题10、D【解析】解出不等式,然后可得答案.【详解】因为,所以故选:D11、B【解析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围12、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;14、##【解析】根据对数的运算性质可得,再由指对数关系有,,即可得答案.【详解】由,又,,∴,,故.故答案为:.15、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.16、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、或【解析】利用函数单调性解决抽象不等式.试题解析:因为函数f(x)=lnx+2x在定义域上单调递增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-<x<-2或2<x<.18、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)利用三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)利用线面垂直的性质,结合线面垂直的判定定理进行证明即可.【详解】(1)因为,分别是,的中点,所以,又因为平面,平面,所以平面;(2)因为底面,底面,所以,又因为,,平面,所以平面,而平面,所以.19、(1);(2)【解析】(1)先求出角,利用诱导公式即可求出;(2)利用根与系数关系求出,得到,利用切化弦和二倍角公式即可求解.【详解】(1)因为,所以由,得,即所以(2)由题意得因为且,所以解得,所以则,即20、(1);(2)答案见解析.【解析】(1)当时,求出集合再根据并集定义求;(2)选择有AB,列不等式求解即可;选择有同样列出不等式求解;选择因为,则或,求解即可【详解】(1)当时,集合,,所以;(2)选择因为“”是“”的充分不必要条件,所以AB,因为,所以又因为,所以等号不同时成立,解得,因此实数a的取值范围是.选择因为,所以.因为,所以.又因为,所以,解得,因此实数a的取值范围是.选择因为,而,且不为空集,,所以或,解得或,所以实数a取值范围是或21、(1)90;(2)0;(3).【解析】(1)利用指数幂的运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶包装设计2024年度委托合同
- 二零二四年度采购合同(含详细商品描述)
- 2024年度船舶买卖合同范本
- 城市供水工程承包合同(2024版)
- 二零二四年度车位销售与租赁权转让合同
- 二零二四年度金融借贷与还款合同
- 二零二四版变电站运行与维护劳务合同
- 2024年度油田开发打桩施工合同
- 2024商场特卖活动发光字制作合同2篇
- 二零二四年度车间维修保养合同
- 《生物力学》配套教学课件
- 人教版高中数学《对数的概念》优秀说课课件
- 保密管理-公司脱离涉密岗位人员物品移交清单
- 中国新生儿复苏指南解读(2021修订)
- 六年级上册音乐教案 第六单元《手拉手》《巴塞罗那》《意大利之夏》人教新课标(2014秋)
- 废气治理设施运行管理规程
- 幼儿园教研活动记录53441
- 统计软件SPSS教案(全)
- 混凝土发泡剂配方
- 产品设备报价单通用模板
- 直线点斜式方程说课 完整版课件
评论
0/150
提交评论