安徽定远高复学校2023-2024学年高一数学第一学期期末教学质量检测试题含解析_第1页
安徽定远高复学校2023-2024学年高一数学第一学期期末教学质量检测试题含解析_第2页
安徽定远高复学校2023-2024学年高一数学第一学期期末教学质量检测试题含解析_第3页
安徽定远高复学校2023-2024学年高一数学第一学期期末教学质量检测试题含解析_第4页
安徽定远高复学校2023-2024学年高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽定远高复学校2023-2024学年高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.命题“,”的否定是()A, B.,C., D.,2.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.3.若,则为()A. B.C. D.4.已知,且,则()A. B.C. D.5.设;,则p是q()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.方程的所有实数根组成的集合为()A. B.C. D.7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.28.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2C.0.8 D.0.610.已知函数部分图象如图所示,则A. B.C. D.11.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个12.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.二、填空题(本大题共4小题,共20分)13.定义在上的函数满足则________.14.已知幂函数的图象过点,则________15.函数的最小值为__________16.函数的定义域为_____________.三、解答题(本大题共6小题,共70分)17.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?18.主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线,其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)证明:为定值19.已知函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4];设(1)求a,b的值;(2)若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,求实数k的取值范围20.甲地到乙地的距离大约为240,某汽车公司为测试一种新型号的汽车的耗油量与行驶速度的关系,进行了多次实地测试,收集到了该车型的每小时耗油量Q(单位:)与速度v(单位:)()的数据如下表:v0406080120Q0.0006.6678.12510.00020.000为了描述汽车每小时耗油量与速度的关系,现有以下三种模型供选择:①;②;③.(1)选出你认为最符合实际的函数模型,并说明理由;(2)从甲地到乙地,该型号的汽车应以什么速度行驶才能使总耗油量最少?21.已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知,,利用上述性质,求函数的单调区间和值域;(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数a的值.22.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】利用全称量词命题的否定变换形式即可求解.【详解】的否定是,的否定是,故“,”的否定是“,”,故选:D2、A【解析】由扇形面积公式计算【详解】由题意,故选:A3、A【解析】根据对数换底公式,结合指数函数与对数函数的单调性直接判断.【详解】由对数函数的单调性可知,即,且,,且,又,即,所以,又根据指数函数的单调性可得,所以,故选:A.4、B【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【详解】,,.故选:B5、A【解析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当时,显然成立,即若则成立;当时,,即若则不成立;综上得p是q充分不必要条件,故选:A.6、C【解析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由,解得或,所以方程的所有实数根组成的集合为;故选:C7、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8、B【解析】根据充分必要性分别判断即可.【详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.9、C【解析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.10、C【解析】由图可以得到周期,然后利用周期公式求,再将特殊点代入即可求得的表达式,结合的范围即可确定的值.【详解】由图可知,,则,所以,则.将点代入得,即,解得,因为,所以.答案为C.【点睛】已知图像求函数解析式的问题:(1):一般由图像求出周期,然后利用公式求解.(2):一般根据图像的最大值或者最小值即可求得.(3):一般将已知点代入即可求得.11、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B12、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题二、填空题(本大题共4小题,共20分)13、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题14、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:315、【解析】所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.16、【解析】根据偶次根式和分式有意义的要求可得不等式组,解不等式组可求得结果.【详解】由题意得:,解得:且,即的定义域为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.18、(1);(2)证明见解析.【解析】(1)首先根据振幅为2求出A,将点(1,-2)代入解析式即可解得;(2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A>0,∴A=2,,将点(1,-2)代入得:,∵,∴,∴,∴,易知与关于x轴对称,所以.(2)由(1).即定值为0.19、(1);(2)【解析】(1)根据函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4],其图象对称轴为直线x=2,且g(x)的最小值为1,最大值为4,列出方程可得实数a,b的值;(2)若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,分离变量k,在x∈[1,2]上恒成立,进而得到实数k的取值范围【详解】(1)∵函数f(x)=ax2-4ax+1+b(a>0)其图象对称轴为直线x=2,函数的定义域为[2,3],值域为[1,4],∴,解得:a=3,b=12;(2)由(Ⅰ)得:f(x)=3x2-12x+13,g(x)==若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,则k≤()2-2()+1在x∈[1,2]上恒成立,2x∈[2,4],∈[,],当=,即x=1时,()2-2()+1取最小值,故k≤【点睛】本题考查二次函数在闭区间上的最值,考查函数恒成立问题问题,考查数形结合与等价转化、函数与方程思想的综合应用,是中档题20、(1)最符合实际的模型为①,理由见解析(2)从甲地到乙地,该型号的汽车以80的速度行驶时能使总耗油量最少【解析】(1)根据定义域和单调性来判断;(2)根据行驶时间与单位时间的耗油量得到总耗油量的函数表达式,再求最小值的条件即可.【小问1详解】依题意,所选的函数必须满足两个条件:定义域为,且在区间上单调递增.由于模型③定义域不可能是.而模型②在区间上是减函数.因此,最符合实际的模型为①.【小问2详解】设从甲地到乙地行驶总耗油量为y,行驶时间为t,依题意有.∵,,∴,它是一个关于v的开口向上的二次函数,其对称轴为,且,∴当时,y有最小值.由题设表格知,当时,,,.∴从甲地到乙地,该型号的汽车以80km/h的速度行驶时能使总耗油量最少.21、(1)减区间为,增区间为;;(2).【解析】(1)设,,,则,,根据函数的性质,可得单调性,根据单调性可得值域;(2)根据单调性求出函数在上的值域,再根据的值域是的值域的子集列式可解得结果.【详解】(1),设,,,则,,由已知性质得,当,即时,单调递减,所以减区间为;当,即时,单调递增,所以增区间为;由,,,得的值域为;(2)因为为减函数,故函数在上的值域为.由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论