版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省开远市第二中学校高一数学第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为()A.-1<a<1 B.0<a<2C.-<a< D.-<a<2.对于实数a,b,c下列命题中的真命题是()A.若a>b,则ac2>bc2 B.若a>b>0,则C.若a<b<0,则 D.若a>b,,则a>0,b<03.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有4.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为()A.2 B.C.1 D.5.已知方程的两根分别为、,且、,则A. B.或C.或 D.6.下图是函数的部分图象,则()A. B.C. D.7.已知点在外,则直线与圆的位置关系为()A.相交B.相切C.相离D.相交、相切、相离三种情况均有可能8.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c9.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.10.“是第一象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知幂函数的图象过点(2,),则的值为()A B.C. D.12.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若函数在区间上单调递减,则实数的取值范围是__________14.已知半径为3的扇形面积为,则这个扇形的圆心角为________15.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________16.在中,已知是上的点,且,设,,则=________.(用,表示)三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,点E为线段BC的中点,点F在线段AD上,且EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC,点P为几何体中线段AD的中点(Ⅰ)证明:平面ACD⊥平面ACF;(Ⅱ)证明:CD∥平面BPE18.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.19.为何值时,直线与:(1)平行(2)垂直20.如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.21.已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,,切点分别为,(1)若,试求点的坐标;(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;(3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标22.设S={x|x=m+n,m、n∈Z}(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1、x2,则x1+x2、x1·x2是否属于S?
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据新定义把不等式转化为一般的一元二次不等式,然后由一元二次不等式恒成立得结论【详解】∵(x-a)⊙(x+a)=(x-a)(1-x-a),∴不等式(x-a)⊙(x+a)<1,即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,所以Δ=1-4(-a2+a+1)<0,解得,故选:C.2、D【解析】逐一分析选项,得到正确答案.【详解】A.当时,,所以不正确;B.当时,,所以不正确;C.,当时,,,即,所以不正确;D.,,即,所以正确.故选D.【点睛】本题考查不等式性质的应用,比较两个数的大小,1.做差法比较;2.不等式性质比较;3.函数单调性比较.3、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B4、C【解析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值【详解】由题意得方程有两个不等实根,当方程有两个非负根时,令时,则方程为,整理得,解得;当时,,解得,故不满足满足题意;当方程有一个正跟一个负根时,当时,,,解得,当时,方程为,,解得;当方程有两个负根时,令,则方程为,解得,当,,解得,不满足题意综上,t的取值为和,因此t的所有取值之和为1,故选C【点睛】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断5、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.6、B【解析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.7、A【解析】结合点与圆的位置关系,直线和圆的位置关系列不等式,由此确定正确答案.【详解】是圆C:外一点,,圆心到直线的距离:,直线与圆相交故选:A8、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B9、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等10、B【解析】根据充分、必要条件的定义,结合角的概念,即可得答案.【详解】若是第一象限角,则,无法得到一定属于,充分性不成立,若,则一定第一象限角,必要性成立,所以“是第一象限角”是“”的必要不充分条件.故选:B11、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题12、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案14、【解析】由扇形的面积公式直接求解.【详解】由扇形面积公式,可得圆心角,故答案为:.【点睛】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.15、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;16、+##【解析】根据平面向量的线性运算可得答案.【详解】因为,所以,所以可解得故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、证明过程详见解析【解析】(Ⅰ)证明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理证明FC⊥CD,即可证明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中点Q,连接QE、QP,证明BPQE四点共面,再证明CD∥EQ,从而证明CD∥平面EBPQ,即为CD∥平面BPE【详解】(Ⅰ)由题意知,四边形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,FC=AB=2,CD=AB=2,∴FD2=FC2+CD2,∴FC⊥CD;又FC∩AF=F,∴CD⊥平面ACF;又CD⊂平面ACD,∴平面ACD⊥平面ACF;(Ⅱ)如图所示,取DF的中点Q,连接QE、QP,则QP∥AF,又AF∥BE,∴PQ∥BF,∴BPQE四点共面;又EC=2,QD=DF=2,且DF∥EC,∴QD与EC平行且相等,∴QECD为平行四边形,∴CD∥EQ,又EQ⊂平面EBPQ,CD⊄平面EBPQ,∴CD∥平面EBPQ,即CD∥平面BPE【点睛】本题主要考查直线和平面平行与垂直的判定应用问题,也考查了平面与平面的垂直应用问题,是中档题18、(1),图象见解析;(2)(3)【解析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.19、(1)或;(2).【解析】利用直线与直线平行与垂直的性质即可求出参数a的值.特别注意直线斜率不存在的情况.【详解】(1)当或时,两直线即不平行,也不垂直.当且,直线的斜率,在轴上的截距;直线的斜率,在轴上的截距.由,且,即,且,得或,当或时,两直线平行.(2)由,即,得.当时,两直线垂直【点睛】本题主要考查直线与直线平行与垂直的性质,属于基础题型.20、(1)证明见解析;(2)证明见解析.【解析】(1)证明,再由,由平行公理证明,证得四点共面;(2)证明,证得面,再证得,证得面,从而证得平面EFA1∥平面BCHG.【详解】(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【点睛】本题考查了四点共面的证明,面面平行的判定,考查对基本定理的掌握与应用,空间想象能力,要注意线线平行、线面平行、面面平行之间的相互转化,属于中档题.21、(1)或;(2)或;(3)详见解析【解析】(1)点在直线上,设,由对称性可知,可得,从而可得点坐标.(2)分析可知直线的斜率一定存在,设其方程为:.由已知分析可得圆心到直线的距离为,由点到线的距离公式可求得的值.(3)由题意知,即.所以过三点的圆必以为直径.设,从而可得圆的方程,根据的任意性可求得此圆所过定点试题解析:解:(1)直线的方程为,点在直线上,设,由题可知,所以,解之得:故所求点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地下桑拿沉井施工协议
- 信息化一体机租赁合同
- 软件开发合同管理教案
- 通信工程设计师聘用合同模板
- 眼镜店店员招聘合同
- 电信基站建设顶管施工合同
- 机场安检区地砖铺装工程协议
- 工商企业管理个人职业生涯规划
- 安徽省蚌埠市(2024年-2025年小学五年级语文)统编版期末考试((上下)学期)试卷及答案
- 山东省济宁市(2024年-2025年小学五年级语文)人教版开学考试(下学期)试卷及答案
- 国企纪检监察嵌入式监督的探索与实践
- 浅议小升初数学教学衔接
- 设备安装应急救援预案
- 深基坑工程降水技术及现阶段发展
- 暂堵压裂技术服务方案
- 《孔乙己》公开课一等奖PPT优秀课件
- 美的中央空调故障代码H系列家庭中央空调(第一部分多联机)
- 业主委员会成立流程图
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 广联达办公大厦工程施工组织设计
- 疑难病例HELLP综合征
评论
0/150
提交评论