版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆第二外国语学校高高一上数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设函数满足,当时,,则()A.0 B.C. D.12.中国高速铁路技术世界领先,高速列车运行时不仅速度比普通列车快而且噪声更小.我们用声强I(单位:W/m2)表示声音在传播途径中每1平方米面积上声能流密度,声强级L1(单位:dB)与声强I的函数关系式为:.若普通列车的声强级是95dB,高速列车的声强级是45dB,则普通列车的声强是高速列车声强的()A.倍 B.倍C.倍 D.倍3.若,则化简=()A. B.C. D.4.若向量,则下列结论正确的是A. B..C. D.5.在中,,,则的值为A. B.C.2 D.36.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.7.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.8.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④9.若,则()A. B.aC.2a D.4a10.函数的零点所在区间为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.幂函数f(x)的图象过点(4,2),则f(x)的解析式是______12.若a∈{1,a2﹣2a+2},则实数a的值为___________.13.函数的最小值为________14.函数的值域是__________15.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.17.(1)化简与求值:lg5+lg2++21n(π-2)0:(2)已知tanα=3.求的值.18.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.19.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.20.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.21.已知函数定义域为,若对于任意的,都有,且时,有.(1)判断并证明函数的奇偶性;(2)判断并证明函数的单调性;(3)若对所有,恒成立,求的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A2、B【解析】根据函数模型,列出关系式,进而结合对数的运算性质,可求出答案.【详解】普通列车的声强为,高速列车声强为,解:设由题意,则,即,所以,即普通列车的声强是高速列车声强的倍.故选:B.【点睛】本题考查函数模型、对数的运算,属于基础题.3、D【解析】根据诱导公式化简即可得答案.【详解】解:.故选:D4、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行5、A【解析】如图,,又,∴,故.选A6、B【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B7、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D8、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.9、A【解析】利用对数的运算可求解.【详解】,故选:A10、B【解析】根据零点存在性定理即可判断求解.【详解】∵f(x)定义域为R,且f(x)在R上单调递增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零点.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据幂函数的概念设f(x)=xα,将点的坐标代入即可求得α值,从而求得函数解析式【详解】设f(x)=xα,∵幂函数y=f(x)的图象过点(4,2),∴4α=2∴α=这个函数解析式为故答案为【点睛】本题主要考查了待定系数法求幂函数解析式、指数方程解法等知识,属于基础题12、2【解析】利用集合的互异性,分类讨论即可求解【详解】因为a∈{1,a2﹣2a+2},则:a=1或a=a2﹣2a+2,当a=1时:a2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2【点睛】本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题13、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:14、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.15、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(1),点到的距离,(2)由题意可知:、、、四点共圆且在以为直径的圆上,设,其方程为:,即,又、在圆上,即由,得,直线过定点)(3)设圆心到直线、的距离分别为,则,当且仅当即时,取“”四边形的面积的最大值为17、(1);(2)-2【解析】(1)利用根式和对数运算求解;(2)利用诱导公式和商数关系求解.【详解】解:(1),,,;(2)原式,,因为,所以原式.18、(1)(2)增函数,证明见解析【解析】(1)根据,由求解;(2)利用单调性的定义证明.【小问1详解】解:∵,且,∴,∴;【小问2详解】函数在上是增函数.任取,不妨设,则,,∵且,∴,,,∴,即,∴在上是增函数.19、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.20、(1);(2);(3).【解析】(1)因为全集,,所以(2)因为,且.所以实数的取值范围是(3)因为,且,所以,所以可得21、(1)为奇函数;证明见解析;(2)是在上为单调递增函数;证明见解析;(3)或.【解析】(1)根据已知等式,运用特殊值法和函数奇偶性的定义进行判断即可;(2)根据函数的单调性的定义,结合已知进行判断即可;(3)根据(1)(2),结合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《防雷工程资格培训》课件
- 鸟生物课件教学课件
- 《集体生活成就我》课件
- KTV顾客投诉的原因及课件
- 规划设计服务合同完整版
- 《建筑制图及识》课件
- 《建筑法规课程简介》课件
- 英语基础模块1-U5 We Have Only One Earth
- 酒店承包经营合同范本完整版
- 龙门吊噪音治理工程2024年合同
- 第5章 对函数的再探索 综合检测
- 专题05-因式分解(历年真题)-2019-2020学年上海七年级数学上册期末专题复习(学生版)
- 安全生产管理制度-普货运输
- 广西壮族自治区房屋建筑和市政工程监理招标文件范本(2020年版)
- 河北省石家庄市第四十中学2024-2025学年七年级上学期期中语文试题
- 2024-2030年中国地热能市场经济效益及发展前景展望研究报告
- 公务用车车辆安全培训课件
- 人工智能导论-2022年学习通超星期末考试答案章节答案2024年
- 单元教学设计17 大单元背景下的教材内容重构设计思路及具体课时实施-高中数学单元教学设计
- 2024CSCO胃癌诊疗指南解读
- 2024秋期国家开放大学本科《合同法》一平台在线形考(任务1至4)试题及答案
评论
0/150
提交评论