




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市清华附中2023-2024学年数学高一上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.2.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}3.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.4.若,,,则、、大小关系为()A. B.C. D.5.四边形中,,且,则四边形是()A.平行四边形 B.菱形C.矩形 D.正方形6.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.7.已知定义在上的奇函数满足当时,,则关于的函数,()的所有零点之和为()A. B.C. D.8.已知实数,满足,则函数零点所在区间是()A. B.C. D.9.下列函数中,是奇函数,又在定义域内为减函数是()A. B.C. D.10.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象恒过定点,点在幂函数的图象上,则=____________12.已知,且是第三象限角,则_____;_____13.如图,全集,A是小于10的所有偶数组成的集合,,则图中阴影部分表示的集合为__________.14.已知函数其中且的图象过定点,则的值为______15.已知,且,则=_______________.16.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3-6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?18.如图,在直三棱柱中,底面为等边三角形,.(Ⅰ)求三棱锥的体积;(Ⅱ)在线段上寻找一点,使得,请说明作法和理由.19.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.20.如图,、分别是的边、上的点,且,,交于.(1)若,求的值;(2)若,,,求的值.21.已知函数(1)若成立,求x的取值范围;(2)若定义在R上奇函数满足,且当时,,求在的解析式,并写出在的单调区间(不必证明)(3)对于(2)中的,若关于x的不等式在R上恒成立,求实数t的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C2、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解3、B【解析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B4、B【解析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得【详解】,,,所以故选:B【点睛】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论5、C【解析】由于,故四边形是平行四边形,根据向量加法和减法的几何意义可知,该平行四边形的对角线相等,故为矩形.6、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.7、B【解析】作函数与的图象,从而可得函数有5个零点,设5个零点分别为,从而结合图象解得【详解】解:作函数与的图象如下,结合图象可知,函数与的图象共有5个交点,故函数有5个零点,设5个零点分别为,∴,,,故,即,故,故选B【点睛】本题考查了函数零点与函数的图象的关系应用及数形结合的思想应用,属于常考题型.8、B【解析】首先根据已知条件求出,的值并判断它们的范围,进而得出的单调性,然后利用零点存在的基本定理即可求解.【详解】∵,,∴,,∴,且为增函数,故最多只能有一个零点,∵,,∴,∴在内存在唯一的零点.故选:B.9、C【解析】是非奇非偶函数,在定义域内为减函数;是奇函数,在定义域内不单调;y=-x3是奇函数,又在定义域内为减函数;非奇非偶函数,在定义域内为减函数;故选C10、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为函数图象恒过定点,则可之令2x-3=1,x=2,函数值为4,故过定点(2,4),然后根据且点在幂函数的图象上,设,故可知=9,故答案为9.考点:对数函数点评:本题考查了对数函数图象过定点(1,0),即令真数为1求对应的x和y,则是所求函数过定点的坐标12、①.##②.##0.96【解析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【详解】因,且是第三象限角,则,所以,.故答案为:;13、【解析】根据维恩图可知,求,根据补集、交集运算即可.【详解】,A是小于10的所有偶数组成的集合,,,由维恩图可知,阴影部分为,故答案为:14、1【解析】根据指数函数的图象过定点,即可求出【详解】函数其中且的图象过定点,,,则,故答案为1【点睛】本题考查了指数函数图象恒过定点的应用,属于基础题.15、【解析】由同角三角函数关系求出,最后利用求解即可.【详解】由,且得则,则.故答案为:.16、;【解析】因为函数的图象向左平移个单位长度,得到,所以的最小值为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)43.5(万元);(2)甲城市投资72万元,乙城市投资48万元.【解析】(1)直接代入收益公式进行计算即可.(2)由收益公式写出f(x)=-x+3+26,令t=,将函数转为关于t的二次函数求最值即可.【详解】(1)当x=50时,此时甲城市投资50万元,乙城市投资70万元,所以公司的总收益为3-6+×70+2=43.5(万元).(2)由题知,甲城市投资x万元,乙城市投资(120-x)万元,所以f(x)=3-6+(120-x)+2=-x+3+26,依题意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,则t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.当t=6,即x=72万元时,y的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【点睛】本题考查函数模型的应用,考查函数最值的求解,属于基础题.18、(1)(2)见解析【解析】(1)取BC中点E连结AE,三棱锥C1﹣CB1A的体积,由此能求出结果.(2)在矩形BB1C1C中,连结EC1,推导出Rt△C1CE∽Rt△CBF,从而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,连结CF,CF即为所求直线解析:(1)取中点连结.在等边三角形中,,又∵在直三棱柱中,侧面面,面面,∴面,∴为三棱锥的高,又∵,∴,又∵底面为直角三角形,∴,∴三棱锥的体积(2)作法:在上取,使得,连结,即为所求直线.证明:如图,在矩形中,连结,∵,,∴,∴,∴,又∵,∴,∴,又∵面,而面,∴,又∵,∴面,又∵面,∴.点睛:这个题目考查的是立体几何中椎体体积的求法,异面直线垂直的证法;对于异面直线的问题,一般是平移到同一平面,再求线线角问题;或者通过证明线面垂直得到线线垂直;对于棱锥体积,可以等体积转化到底面积和高好求的椎体中19、(1)(2)这样规定公平,详见解析【解析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.20、(1);(2).【解析】(1)利用平面向量加法的三角形法则可求出、的值,进而可计算出的值;(2)设,设,根据平面向量的基本定理可得出关于、的方程组,解出这两个未知数,可得出关于、的表达式,然后用、表示,最后利用平面向量数量积的运算律和定义即可计算出的值.【详解】(1),,,因此,;(2)设,再设,则,即,所以,,解得,所以,因此,.【点睛】本题考查利用平面向量的基本定理求参数,同时也考查了平面向量数量积的计算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中等题.21、(1)(2),在和单调递减,在单调递增(3)【解析】(1)把题给不等式转化成对数不等式,解之即可;(2)利用题给条件分别去求和的函数解析式,再综合写成分段函数即可解决;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语言、文化与交际知到课后答案智慧树章节测试答案2025年春湖南大学
- 江苏省徐州市2024-2025学年高一上学期1月期末信息技术试题 含解析
- 2024年自然资源部第一海洋研究所招聘真题
- 2025汽车零部件供应商合同管理咨询协议
- 高一英语学案:预习导航SectionⅡ
- 深圳施工总价合同范本
- 2024年山东济南福和数控机床有限公司招聘真题
- 2024年梅河口市市属事业单位考试真题
- 2024年廉江市市属事业单位考试真题
- 光缆颗粒采购合同范本
- 网络零售行业分析
- 屋顶光伏发电系统设计原则与方案
- 保安上墙制度
- 2025念珠菌病诊断和管理全球指南解读课件
- 碘对比剂应用护理安全性
- 第11课《山地回忆》课件-2024-2025学年统编版语文七年级下册
- 水电站安全生产培训
- 《矿井提升设备》课件2
- 被迫解除劳动合同通知书电子邮件
- 工具表单-岗位价值评估表(海氏)
- DB33T 2515-2022 公共机构“零碳”管理与评价规范
评论
0/150
提交评论