2024届云南省盈江县第一高级中学数学高一上期末统考试题含解析_第1页
2024届云南省盈江县第一高级中学数学高一上期末统考试题含解析_第2页
2024届云南省盈江县第一高级中学数学高一上期末统考试题含解析_第3页
2024届云南省盈江县第一高级中学数学高一上期末统考试题含解析_第4页
2024届云南省盈江县第一高级中学数学高一上期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省盈江县第一高级中学数学高一上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.函数的部分图象如图所示,则的值为()A. B.C. D.2.关于三个数,,的大小,下面结论正确的是()A. B.C. D.3.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.4.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是5.已知,若,则()A.或 B.3或5C.或5 D.36.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-48.设集合,则是A. B.C. D.有限集9.已知函数f(x)=loga(x+1)(其中a>1),则f(x)<0的解集为()A. B.C. D.10.函数的图像的一条对称轴是()A. B.C. D.11.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这截面把圆锥母线分成的两段的比是(

)A.1:3 B.1:()C.1:9 D.12.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知集合,,且,则实数的取值范围是__________14.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”15.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.16.函数fx=三、解答题(本大题共6小题,共70分)17.已知A(2,0),B(0,2),,O为坐标原点(1),求sin2θ的值;(2)若,且θ∈(-π,0),求与的夹角18.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围19.已知函数的图象过点,.(1)求函数的解析式;(2)若函数在区间上有零点,求整数k的值;(3)设,若对于任意,都有,求m的取值范围.20.某学校对高一某班的名同学的身高(单位:)进行了一次测量,将得到的数据进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.(1)求直方图中的值,估计全班同学身高的中位数;(2)若采用分层抽样的方法从全班同学中抽取了名身高在内的同学,再从这名同学中任选名去参加跑步比赛,求选出的名同学中恰有名同学身高在内的概率.21.已知函数(1)求的最小正周期;(2)当时,求的单调区间;(3)在(2)的件下,求的最小值,以及取得最小值时相应自变量x的取值.22.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【点睛】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.2、D【解析】引入中间变量0和2,即可得到答案;【详解】,,,,故选:D3、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.4、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C5、D【解析】根据分段函数的定义,分与两种情况讨论即可求解.【详解】解:由题意,当时,,解得或(舍去);当,,解得(舍去);综上,.故选:D.6、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同7、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.8、C【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0};由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S故选C【点睛】本题属于求函数值域,考查了交集的求法,属于基础题9、D【解析】因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可【详解】因为,所以在单调递增,所以所以,解得故选D【点睛】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化10、C【解析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.11、B【解析】平行于底面的平面截圆锥可以得到一个小圆锥,利用它的底面与原圆锥的底面的面积之比得到相应的母线长之比,故可得截面分母线段长所成的两段长度之比.【详解】设截面圆的半径为,原圆锥的底面半径为,则,所以小圆锥与原圆锥的母线长之比为,故截面把圆锥母线段分成的两段比是.选B.【点睛】在平面几何中,如果两个三角形相似,那么它们的面积之比为相似比的平方,类似地,在立体几何中,平行于底面的平面截圆锥所得的小圆锥与原来的圆锥的底面积之比为,体积之比为(分别为小圆锥的底面半径和原圆锥的底面半径).12、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.二、填空题(本大题共4小题,共20分)13、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.14、(1)是;(2)①;②见解析【解析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【点睛】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.15、①.②.【解析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;16、0【解析】先令t=cosx,则t∈-1,1,再将问题转化为关于【详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】分析:(1)先根据向量数量积得sinθ+cosθ值,再平方得结果,(2)先根据向量的模得cosθ,即得C点坐标,再根据向量夹角公式求结果.详解:(1)∵=(cosθ,sinθ)-(2,0)=(cosθ-2,sinθ),=(cosθ,sinθ)-(0,2)=(cosθ,sinθ-2),=cosθ(cosθ-2)+sinθ(sinθ-2)=cos2θ-2cosθ+sin2θ-2sinθ=1-2(sinθ+cosθ)=-∴sinθ+cosθ=,∴1+2sinθcosθ=,∴sin2θ=-1=-.(2)∵=(2,0),=(cosθ,sinθ),∴+=(2+cosθ,sinθ),∵|+|=,所以4+4cosθ+cos2θ+sin2θ=7,∴4cosθ=2,即cosθ=.∵-π<θ<0,∴θ=-,又∵=(0,2),=,∴cos〈,〉=,∴〈,〉=.点睛:向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,通过解三角求得结果.18、(1)(2)【解析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号不同时取),故.19、(1);(2)的取值为2或3;(3).【解析】(1)根据题意,得到,求得的值,即可求解;(2)由(1)可得,得到,设,根据题意转化为函数在上有零点,列出不等式组,即可求解;(3)求得的最大值,得出,得到,设,结合单调性和最值,即可求解.【详解】(1)函数的图像过点,所以,解得,所以函数的解析式为.(2)由(1)可知,,令,得,设,则函数在区间上有零点,等价于函数在上有零点,所以,解得,因为,所以的取值为2或3.(3)因为且,所以且,因为,所以的最大值可能是或,因为所以,只需,即,设,在上单调递增,又,∴,即,所以,所以m的取值范围是.【点睛】已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.20、(1),中位数为(2)【解析】(1)利用频率分布直方图中所有矩形的面积之和为可求得的值,设中位数为,利用中位数左边的矩形面积之和为列等式可求得的值;(2)分析可知所抽取的名学生,身高在的学生人数为,分别记为、、,身高在的学生人数为,记为,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由图可得,解得.设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,可知,所以,,解得,故估计全班同学身高的中位数为.【小问2详解】解:所抽取的名学生,身高在的学生人数为,身高在的学生人数为,设身高在内的同学分别为、、,身高在内的同学为,则这个试验的样本空间可记为,共包含个样本点,记事件选出的名同学中恰有一名同学身高在内.则事件包含的基本事件有、、,共种,故.21、(1)(2)的单调递增区间为,单调递减区间为(3)当时,的最小值为0【解析】(1)根据周期公式计算即可.(2)求出单调区间,然后与所给的范围取交集即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论