版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市育英学校2023-2024学年高一数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直2.已知是第三象限角,且,则()A. B.C. D.3.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,4.若,,,则、、大小关系为()A. B.C. D.5.若,,且,则A. B.C. D.6.设,为正数,且,则的最小值为()A. B.C. D.7.已知函数,若,则x的值是()A.3 B.9C.或1 D.或38.,,则p是q的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.010.若,,则的值为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____12.已知点是角终边上一点,且,则的值为__________.13.设函数(e为自然对数的底数,a为常数),若为偶函数,则实数______;若对,恒成立,则实数a的取值范围是______14.在中,,,且在上,则线段的长为______15.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数求的最小正周期以及图象的对称轴方程当时,求函数的最大值和最小值17.某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.18.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.19.设函数是定义在上的奇函数,当时,(1)确定实数的值并求函数在上的解析式;(2)求满足方程的的值.20.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?21.已知集合,.(1)若,求实数t的取值范围;(2)若“”是“”的必要不充分条件,求实数t的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题.2、A【解析】由是第三象限角可判断,利用平方关系即可求解.【详解】解:因为是第三象限角,且,所以,故选:A.3、C【解析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【点睛】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同4、B【解析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得【详解】,,,所以故选:B【点睛】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论5、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一个根,b是方程的另一个根由韦达定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=−6,即b=−8,∴2×b=−16=−q,∴q=16∴p+q=21故选:A6、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.7、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A8、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B9、D【解析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D10、D【解析】根据诱导公式即可直接求值.【详解】因为,所以,又因为,所以,所以.故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①②##②①【解析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②12、【解析】由三角函数定义可得,进而求解即可【详解】由题,,所以,故答案为:【点睛】本题考查由三角函数值求终边上的点,考查三角函数定义的应用13、①.1②.【解析】第一空根据偶函数的定义求参数,第二空为恒成立问题,参变分离后转化成求函数最值【详解】由,即,关于恒成立,故恒成立,等价于恒成立令,,,故a的取值范围是故答案为:1,14、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为115、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)最小正周期为,对称轴方程为(2)最小值0;最大值【解析】(1)先根据二倍角公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求周期以及图象的对称轴方程(2)先根据自变量范围,确定范围,再根据正弦函数图像得最值试题解析:解:的最小正周期为由得的对称轴方程为当时,当时,即时,函数f(x)取得最小值0;当时,即时,函数f(x)取得最大值17、电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.【解析】根据题意列新增用电量,再乘以单价利润得收益,列不等式,解一元二次不等式,根据限制条件取交集得电价取值范围,即得最低电价试题解析:设新电价为元/千瓦时,则新增用电量为千瓦时.依题意,有,即,整理,得,解此不等式,得或,又,所以,,因此,,即电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.18、(Ⅰ);(Ⅱ)答案见详解.【解析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【点睛】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2)函数零点问题一般可以转换为方程的根,或者两函数图像交点的问题,在答题时,需要根据实际情况进行转换,本题利用了转化及数形结合的思想,属于中档题.19、(1),(2)或或【解析】(1)利用奇函数定义即可得到的值及函数在上的解析式;(2)分成两类,解指数型方程即可得到结果.【详解】(1)是定义在上的奇函数当时,,当时,设,则(2)当时,,令,得得解得是定义在上的奇函数所以当x<0时的根为:所以方程的根为:【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围20、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亲子田园活动策划案
- 培训费用预算管理
- 《全球互动网招商》课件
- 易制爆化学品购销使用制度
- 《汽车文化之沃尔沃》课件
- 小学四年级数学三位数乘两位数水平练习练习题
- 子宫全切术后护理
- 行业等级评价信息的收集的方法渠道
- 新大陆云服务平台的使用网关管理智慧养老技术概论
- 现代办公事务处理缮印
- 历史幽愤的现代回响——《记念刘和珍君》课堂实录
- 英语单词分类大全-20170913
- 信息技术课课堂教学评价表
- 施工进度计划书
- 35KV集电线路铁塔组立专项方案
- 不锈钢管规格表大全以及理论重量表大全
- 公司保密制度-附保密分类表
- 滑雪场管理手册
- 人类养生长寿的新方法---“中枢平衡”健体强身模式
- 胸外科技术操作规范
- 环氧树脂胶配制方法
评论
0/150
提交评论