2024届新疆哈密市石油高级中学数学高一上期末调研试题含解析_第1页
2024届新疆哈密市石油高级中学数学高一上期末调研试题含解析_第2页
2024届新疆哈密市石油高级中学数学高一上期末调研试题含解析_第3页
2024届新疆哈密市石油高级中学数学高一上期末调研试题含解析_第4页
2024届新疆哈密市石油高级中学数学高一上期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新疆哈密市石油高级中学数学高一上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图中的图象所表示的函数的解析式为()A.BC.D.2.已知函数是定义在上的偶函数,当时,,则函数的零点个数为()A.20 B.18C.16 D.143.下列各对角中,终边相同的是()A.和 B.和C.和 D.和4.若,,则的值为A. B.C. D.5.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要6.设函数,则当时,的取值为A.-4 B.4C.-10 D.107.若,,若,则a的取值集合为()A. B.C. D.8.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q9.若,,三点共线,则()A. B.C. D.10.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形A.①④ B.①③④C.②③ D.①③11.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④12.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米 B.1.768米C.2.043米 D.2.945米二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.14.如图,扇形的面积是1,它的弧长是2,则扇形的圆心角的弧度数为______15.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】16.空间两点与的距离是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,.(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.18.设有一条光线从射出,并且经轴上一点反射.(1)求入射光线和反射光线所在的直线方程(分别记为);(2)设动直线,当点到的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.19.已知是定义在上的偶函数,且时,(1)求函数的表达式;(2)判断并证明函数在区间上的单调性20.已知函数f(x)=sin(2x+π(1)列表,描点,画函数f(x)的简图,并由图象写出函数f(x)的单调区间及最值;(2)若f(x1)=f(x2)21.已知向量=(3,2),=(-1,2),=(4,1)(1)若=m+n,求m,n的值;(2)若向量满足(-)(+),|-|=2,求的坐标.22.对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若是由“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】分段求解:分别把0≤x≤1及1≤x≤2时解析式求出即可【详解】当0≤x≤1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1≤x≤2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得所以此时f(x)=.函数表达式可转化为:y=|x-1|(0≤x≤2)故答案为B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得2、C【解析】解方程,得或,作出的图象,由对称性只要作的部分,观察的图象与直线和直线的交点的个数即得【详解】,或根据函数解析式以及偶函数性质作图象,当时,.,是抛物线的一段,当,由的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y轴右侧的图象,根据对称轴可得左侧的结论,时,,的图象与直线和的交点个数,分别有3个和5个,∴函数g(x)的零点个数为,故选:C【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论3、C【解析】利用终边相同的角的定义,即可得出结论【详解】若终边相同,则两角差,A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.,故D选项错误.故选:C.【点睛】本题考查终边相同的角的概念,属于基础题.4、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础5、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.6、C【解析】详解】令,则,选C.7、B【解析】或,分类求解,根据可求得的取值集合【详解】或,,,或或,解得或,综上,故选:8、A【解析】根据自然数集以及有理数集的含义判断数与集合关系.【详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【点睛】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.9、A【解析】先求出,从而可得关于的方程,故可求的值.【详解】因为,,故,因为三点共线,故,故,故选:A.10、D【解析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称.【详解】对①,中心对称图形有无数个,①正确对②,函数是偶函数,不关于原点成中心对称.②错误对③,正弦函数关于原点成中心对称图形,③正确.对④,充要条件应该是关于原点成中心对称图形,④错误故选D【点睛】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误.11、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D12、B【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长【详解】解:由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据内接圆柱的轴截面是边长为2的正方形,确定球O的半径,再由球的表面积公式即得。【详解】由题得,圆柱底面直径为2,球的半径为R,球O的内接圆柱的轴截面是边长为2的正方形,则圆柱的轴截面的对角线即为球的直径,故,则球的表面积.故答案为:【点睛】本题考查空间几何体,球的表面积,是常见的考题。14、【解析】根据扇形的弧长公式和面积公式,列出方程组,即可求解.【详解】由题意,设扇形所在圆的半径为,扇形的弧长为,因为扇形的面积是1,它的弧长是2,由扇形的面积公式和弧长公式,可得,解得,.故答案为2.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和扇形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【点睛】本题考查了空间中点的坐标与应用问题,是基础题16、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.18、(1)(2)【解析】(1)由入射光线与反射光线的关系可知关于轴对称故斜率互为相反数(2)∵恒过点,∴作于,则,∴当时最大.即,时点到的距离最大.设所围三角形的内切圆的方程为,则,解得试题解析:(1)∵,∴.∴入射光线所在的直线的方程为.∵关于轴对称,∴反射光线所在的直线的方程为.(2)∵恒过点,∴作于,则,∴当时最大.即,时点到的距离最大.∵,∴,∴的方程为.设所围三角形的内切圆的方程为,则,解得(或舍去),∴所求的内切圆方程为.19、(1)(2)单调减函数,证明见解析【解析】(1)设,则,根据是偶函数,可知,然后分两段写出函数解析式即可;(2)利用函数单调性的定义,即可判断函数的单调性,并可证明结果【小问1详解】解:设,则,,因为函数为偶函数,所以,即,所以【小问2详解】解:设,,∵,∴,,∴,∴在为单调减函数20、(1)图象见解析,在[-π4,π8]、[5π(2)答案见解析.【解析】(1)根据解析式,应用五点法确定点坐标列表,进而描点画图象,由图象判断单调性、最值.(2)讨论f(x1)=f(x2【小问1详解】由解析式可得:x--π3π5π3πf(x)-010-1-∴f(x)的图象如下图示:∴f(x)在[-π4,π8]、[【小问2详解】1、若f(x1)=f(x2)∈(-22、若f(x1)=f(当x1+x当x1+x当x1+x3、若f(x1)=f(x2)∈(-1,-221、(1);(2)=(2,3)或=(6,5).【解析】(1)利用向量线性坐标运算即可求解.(2)根据向量共线的坐标表示以及向量模的坐标表示列方程组即可求解.【详解】解:(1)若=m+n,则(4,1)=m(3,2)+n(-1,2)即所以(2)设=(x,y),则-=(x-4,y-1),+=(2,4)(-)(+),|-|=2解得或所以=(2,-3)或=(6,5)22、(1);(2)【解析】⑴由已知得,求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论