




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市济钢高级中学高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若函数在上有三个零点,则的最大值为A. B.C. D.2.设方程的解为,则所在的区间是A. B.C. D.3.如图所示的时钟显示的时刻为,此时时针与分针的夹角为.若一个半径为的扇形的圆心角为,则该扇形的面积为()A. B.C. D.4.在平行四边形中,与相交于点,是线段中点,的延长线交于点,若,则等于()A. B.C. D.5.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)6.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.7.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确8.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.9.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.10.已知,,,则的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如下图所示的正四棱台的上底面边长为2,下底面边长为8,高为3212.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.13.不等式的解集为_____14.在单位圆中,已知角的终边与单位圆的交点为,则______15.已知,若,使得,若的最大值为M,最小值为N,则___________.16.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难人微;数形结合百般好,隔裂分家万事休,在数学学习和研究中,常用函数的图象来研究函数的性质.请写出一个在上单调递增且图象关于y轴对称的函数:________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.18.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)求圆C的标准方程;(2)求圆C在点B处的切线方程.19.已知.(1)化简;(2)若,求的值;(3)解关于的不等式:.20.已知函数.(1)若函数的定义域为,求集合;(2)若集合,求.21.已知函数(1)求最小正周期;(2)求的单调递减区间;(3)当时,求的最小值及取得最小值时的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,画出函数图像,结合图象进而求得答案【详解】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,结合函数图象可知,当直线经过点时,取得最小值,从而取得最大值,且.【点睛】本题考查函数的零点问题,解题的关键是得出函数与的图象在上有三个不同的交点,属于一般题2、B【解析】构造函数,则函数的零点所在的区间即所在的区间,由于连续,且:,,由函数零点存在定理可得:所在的区间是.本题选择B选项.3、C【解析】求出的值,利用扇形的面积公式可求得扇形的面积.【详解】由图可知,,所以该扇形的面积故选:C.4、A【解析】化简可得,再由及选项可得答案【详解】解:由题意得,,;、、三点共线,,结合选项可知,;故选:5、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.6、C【解析】先由三角函数的最值得或,再由得,进而可得单调增区间.【详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【点睛】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.7、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.8、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D9、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.10、A【解析】利用对数函数和指数函数的性质求解【详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】如下图所示,O'B'=2,OM=212、①.②.【解析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,13、【解析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可【详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}故答案为【点睛】本题考查了一元二次不等式的解法与应用问题,是基础题目14、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:15、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.16、(答案不唯一)【解析】利用函数的单调性及奇偶性即得.【详解】∵函数在上单调递增且图象关于y轴对称,∴函数可为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、24【解析】由题意得:,所以时,.考点:函数及其应用.18、(1)(2)【解析】(1)做辅助线,利用勾股定理,计算BC的长度,然后得出C的坐标,结合圆的方程,即可得出答案.(2)利用直线垂直,斜率之积为-1,计算切线的斜率,结合点斜式,得到方程.【详解】(1)过C点做CDBA,联接BC,因为,所以,因为所以,所以圆的半径故点C的坐标为,所以圆的方程为(2)点B的坐标为,直线BC的斜率为故切线斜率,结合直线的点斜式解得直线方程为【点睛】本道题目考查了圆的方程的求解和切线方程计算,在计算圆的方程的时候,关键找出圆的半径和圆心,建立方程,计算切线方程,可以结合点斜式,计算方程,即可.19、(1);(2);(3).【解析】(1)运用诱导公式和同角三角函数关系进行化简,即可得到化简结果;(2)结合(1)得到的结果,将问题转化为齐次式进行求解,即可计算出结果;(3)结合(1)得到的结果,将其转化为不等式即可求出结果.【详解】(1)因为,,,,,,,.(2)由(1)可知,=11(3)因为,可转化为整理可得,则,解得,故不等式的解集为.【点睛】关键点点睛:解答第一问时关键是需要熟练掌握诱导公式,对其进行化简,并能结合同角三角函数关系计算结果,解答第二问时可以将其转化为齐次式,即可计算出结果.20、(1);(2).【解析】⑴满足函数有意义的条件为,求出结果即可;⑵根据已知条件及并集的运算法则可得结果;解析:(1)要使函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西北民族大学《妇产科学床边教学》2023-2024学年第一学期期末试卷
- 汕头大学《证券市场基本法》2023-2024学年第二学期期末试卷
- 2025年益阳市数学五下期末学业水平测试试题含答案
- 小学生春季疾病防控知识
- 思维导图集训6小时找到适合你的高效学习法第1讲 思维导图在预习中的应用
- 大学生性别教育
- 上海市奉贤区2025届高三高考二模地理试卷(含答案)
- 2025《房地产经纪专业基础》备考提升核心试题库-500题
- 云南省卫生健康系统事业单位招聘-药学类近年考试真题库(含答案)
- 教育销售培训资料
- 监理工作阶段性报告(共页)
- 饭店转包合同
- 人教版音乐九下第二单元《梨园风采(二)》夫妻双双把家还教案
- 执法办案和执法监督注意事项课件
- 高档汽车租赁合同书
- 小学急救知识PPT模板
- 2023年新版新汉语水平考试五级HSK真题
- 《交变电流》说课一等奖课件
- 小学英语三年级英语绘本阅读公开课Dear-zoo优质课件
- JJG 141-2013工作用贵金属热电偶
- GB/T 32161-2015生态设计产品评价通则
评论
0/150
提交评论