2024届湖南省高一上数学期末学业水平测试模拟试题含解析_第1页
2024届湖南省高一上数学期末学业水平测试模拟试题含解析_第2页
2024届湖南省高一上数学期末学业水平测试模拟试题含解析_第3页
2024届湖南省高一上数学期末学业水平测试模拟试题含解析_第4页
2024届湖南省高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省高一上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则2.为得到函数的图象,只需将函数的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位3.已知,则为()A. B.2C.3 D.或34.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为()A. B.C. D.5.已知正方体外接球的表面积为,正方体外接球的表面积为,若这两个正方体的所有棱长之和为,则的最小值为()A. B.C. D.6.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围是()A. B.C. D.7.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.8.借助信息技术画出函数和(a为实数)的图象,当时图象如图所示,则函数的零点个数为()A.3 B.2C.1 D.09.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.10.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.111.()A. B.3C.2 D.12.设为全集,是集合,则“存在集合使得是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题(本大题共4小题,共20分)13.已知函数f(x)=①f(5)=______;②函数f(x)与函数y=(14.化简________.15.已知向量,,,则=_____.16.已知集合,若,则________.三、解答题(本大题共6小题,共70分)17.已知是幂函数,是指数函数,且满足,(1)求函数,的解析式;(2)若,,请判断“是的什么条件?(“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”)18.已知函数(1)化简并求的值;(2)若是第三象限角,且,求19.已知函数.(1)解不等式;(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.20.已知函数.(1)求函数的最小正周期;(2)求函数的最大值.21.如图,某地一天从6~14时的温度变化曲线近似满足函数(,).(1)求这一天6~14时的最大温差;(2)写出这段曲线的解析式;(3)预测当天12时的温度(,结果保留整数).22.已知函数求:的最小正周期;的单调增区间;在上的值域

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】,,故选D.考点:点线面的位置关系.2、A【解析】先将变形为,即可得出结果.详解】,只需将函数的图象向左平移个长度单位.故选:A.【点睛】本题考查三角函数的平移变换,属于基础题.3、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C4、D【解析】根据圆心在直线上,设圆心坐标为,然后根据圆C与直线及都相切,由求解.【详解】因为圆心在直线上,设圆心坐标为,因为圆C与直线及都相切,所以,解得,∴圆心坐标为,又,∴,∴圆的方程为,故选:D.5、B【解析】设正方体的棱长为,正方体的棱长为,然后表示出两个正方体外接球的表面积,求出化简变形可得答案【详解】解:设正方体的棱长为,正方体的棱长为因为,所以,则因为,所以,因为,所以,故当时,取得最小值,且最小值为故选:B6、C【解析】由已知可得.再由由点在圆内部或圆上可得.由此可解得点在以和为端点的线段上运动.由表示以和为端点的线段上的点与坐标原点连线的斜率可得选项【详解】函数恒过定点.将点代入直线可得,即由点在圆内部或圆上可得,即.或.所以点在以和为端点的线段上运动表示以和为端点的线段上的点与坐标原点连线的斜率.所以,.所以故选:C【点睛】关键点点睛:解决本题类型的问题,关键在于由已知条件得出所满足的可行域,以及明确所表示的几何意义.7、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.8、B【解析】由转化为与的图象交点个数来确定正确选项.【详解】令,,所以函数的零点个数即与的图象交点个数,结合图象可知与的图象有个交点,所以函数有个零点.故选:B9、B【解析】求圆心角的弧度数,再由弧长公式求弧长.【详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.10、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.11、D【解析】利用换底公式计算可得答案【详解】故选:D12、C【解析】①当,,且,则,反之当,必有.②当,,且,则,反之,若,则,,所以.③当,则;反之,,.综上所述,“存在集合使得是“”的充要条件.考点:集合与集合的关系,充分条件与必要条件判断,容易题.二、填空题(本大题共4小题,共20分)13、①.-14【解析】①根据函数解析式,代值求解即可;②在同一直角坐标系中画出两个函数的图象,即可数形结合求得结果.【详解】①由题可知:f5②根据f(x)的解析式,在同一坐标系下绘制f(x)与y=(数形结合可知,两个函数有3个交点.故答案为:-14;14、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.15、【解析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【详解】因为向量,,所以则即解得故答案为:【点睛】本题考查了向量垂直的坐标关系,属于基础题.16、0【解析】若两个集合相等,则两个集合中的元素完全相同.,又,故答案为0.点睛:利用元素的性质求参数的方法(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值;(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.三、解答题(本大题共6小题,共70分)17、(1),(2)“”是“”的必要不充分条件【解析】(1)利用待定系数法求得.(2)通过求函数的值域求得,由此确定充分、必要条件.【小问1详解】设,,则则,代入,∴,.【小问2详解】由(1)知,,,当时,,有,得,又由,有,得,故,当时,,有,得,又由,有,,解得,故,由,故“”是“”的必要不充分条件18、(1);.(2)【解析】(1)根据三角函数的诱导公式,准确运算,求得,进而求得的值;(2)由,得到,,进而求得.【小问1详解】解:由函数,所以.【小问2详解】解:因为是第三象限角,且,可得,所以,所以.19、(1)(1,3);(2).【解析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可;(2)利用函数的奇偶性以及函数恒成立,结合对勾函数的图象与性质求解函数的最值,推出结果【详解】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3)(2)由题意得解得.2ag(x)+h(2x)≥0,即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以.【点睛】本题考查函数与方程的综合应用,二次函数的性质,对勾函数的图像与性质以及函数恒成立的转化,考查计算能力20、(1)(2)4【解析】(1)根据余弦函数的周期公式,求得答案;(2)根据余弦函数的性质,可求得函数f(x)的最大值.【小问1详解】由题意可得:函数的最小正周期为:;【小问2详解】因为,故,即的最大值为4.21、(1)20℃;(2)();(3)27℃.【解析】(1)观察图象求出函数的最大、最小值即可计算作答;(2)根据给定图象求出解析式中相关参数,即可代入作答;(3)求出当时的y值作答.【小问1详解】观察图象得:6时的温度最低为10℃,14时的温度最高为30℃,所以这一天6~14时的最大温差为20℃.【小问2详解】观察图象,由解得:,周期,,即,则,而当时,,则,又,有,所以这段曲线的解析式为:,.小问3详解】由(2)知,当时,,预测当天12时的温度为27℃.22、(1);(2),;(3).【解析】利用三角恒等变换化简函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论