2024届广东省深圳市乐而思中心高一上数学期末经典试题含解析_第1页
2024届广东省深圳市乐而思中心高一上数学期末经典试题含解析_第2页
2024届广东省深圳市乐而思中心高一上数学期末经典试题含解析_第3页
2024届广东省深圳市乐而思中心高一上数学期末经典试题含解析_第4页
2024届广东省深圳市乐而思中心高一上数学期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳市乐而思中心高一上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.若角的终边过点,则等于A. B.C. D.2.不等式的解集为()A.{x|1<x<4} B.{x|﹣1<x<4}C.{x|﹣4<x<1} D.{x|﹣1<x<3}3.已知函数是定义在上的奇函数,当时,,则当时,表达式是A. B.C. D.4.已知函数,则使成立的x的取值范围是()A. B.C. D.5.已知向量,,若,则()A. B.C.2 D.36.已知命题p:“”,则为()A. B.C. D.7.设函数,则当时,的取值为A.-4 B.4C.-10 D.108.已知函数的定义域为,且满足对任意,有,则函数()A. B.C. D.9.已知,则A.-2 B.-1C. D.210.设,则的大小关系是()A. B.C. D.11.如图所示,在中,.若,,则()A. B.C. D.12.已知函数的图像中相邻两条对称轴之间的距离为,当时,函数取到最大值,则A.函数的最小正周期为 B.函数的图像关于对称C.函数的图像关于对称 D.函数在上单调递减二、填空题(本大题共4小题,共20分)13.某次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.则参加测试的总人数为______,分数在之间的人数为______.14.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________15.已知,,且,则的最小值为___________.16.函数(且)的图象恒过定点_________三、解答题(本大题共6小题,共70分)17.已知,.(1)求的值;(2)求的值;(3)求的值.18.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并证明19.已知函数(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若,求函数的最大值和最小值.20.某形场地,,米(、足够长).现修一条水泥路在上,在上),在四边形中种植三种花卉,为了美观起见,决定在上取一点,使且.现将铺成鹅卵石路,设鹅卵石路总长为米.(1)设,将l表示成的函数关系式;(2)求l的最小值.21.某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)项目类别年固定成本每件产品成本每件产品销售价每年最多可生产的件数A产品20m10200B产品40818120其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[6,9],另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划22.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足,.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】角终边过点,则,所以.故选C.2、B【解析】把不等式化为,求出解集即可【详解】解:不等式可化为,即,解得﹣1<x<4,所以不等式的解集为{x|﹣1<x<4}故选:B【点评】本题考查了一元二次不等式的解法,是基础题3、D【解析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出.【详解】设,则,当时,,,函数是定义在上的奇函数,,,故选D.【点睛】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为4、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.5、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A6、C【解析】根据命题的否定的定义判断【详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C7、C【解析】详解】令,则,选C.8、C【解析】根据已知不等式可以判断函数的单调性,再结合四个选项进行判断即可.【详解】因为,所以由,构造新函数,因此有,所以函数是增函数.A:,因为,所以不符合增函数的性质,故本选项不符合题意;B:,当时,函数单调递减,故本选项不符合题意;C:,显然符合题意;D:,因为,所以不符合增函数的性质,故本选项不符合题意,故选:C9、B【解析】,,则,故选B.10、B【解析】利用“”分段法确定正确选项.【详解】,,所以.故选:B11、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C12、D【解析】由相邻对称轴之间的距离,得函数的最小正周期,求得,再根据当时,函数取到最大值求得,对函数的性质进行判断,可选出正确选项【详解】因为函数的图像中相邻两条对称轴之间的距离为,所以,函数的最小正周期,所以,又因为当时,函数取到最大值,所以,,因为,所以,,函数最小正周期,A错误;函数图像的对称轴方程为,,B错误;函数图像的对称中心为,,C错误;所以选择D【点睛】由的图像求函数的解析式时,由函数的最大值和最小值求得,由函数的周期求得,代值进函数解析式可求得的值二、填空题(本大题共4小题,共20分)13、①.25②.4【解析】根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率和[90,100)之间的频率一样,继而得到参加测试的总人数及分数在[80,90)之间的人数.【详解】成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人,由,解得n=25,成绩在[80,90)之间的人数为25-(2+7+10+2)=4人,所以参加测试人数n=25,分数在[80,90)的人数为4人.故答案为:25;4【点睛】本题主要考查茎叶图、频率分布直方图,样本的频率分布估计总体的分布,属于容易题.14、①.②.【解析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;15、【解析】由已知凑配出积为定值,然后由基本不等式求得最小值【详解】因为,,且,所以,当且仅当,即时等号成立故答案为:16、【解析】令对数的真数为,即可求出定点的横坐标,再代入求值即可;【详解】解:因为函数(且),令,解得,所以,即函数恒过点;故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2);(3).【解析】(1)利用二倍角的正切公式求解即可;(2)将分子分母同除得到,代值求解即可;(3)先求得,再用两角差的正弦公式求解即可.【详解】(1)(2)(3)18、(1)(2)函数为定义域上的偶函数,证明见解析【解析】(1)由题意可得,解不等式即可求出结果;(2)令,证得,根据偶函数的定义即可得出结论.【小问1详解】由,则有,得.则函数的定义域为【小问2详解】函数为定义域上的偶函数令,则,又则,有成立则函数为在定义域上的偶函数19、(1)减函数,证明见解析(2),【解析】(1)根据定义法证明函数单调性即可求解;(2)根据(1)中的单调性求解最值即可.【小问1详解】任取,,且则-因为,所以,所以,即,所以在区间上是减函数【小问2详解】因为函数在区间上是减函数,所以,.20、(1)见解析;(2)20.【解析】(1)设,可得:,;(2)利用二次函数求最值即可.试题解析:(1)设米,则即,(2),当,即时,取得最小值为,的最小值为20.答:的最小值为20.21、(1),且;,且;(2)答案见解析.【解析】(1)设年销售量为件,由题意可得,,注意根据实际情况确定定义域.(2)分别计算两种方案的最值可得,讨论的符号,研究不同的方案所投资的产品及最大利润.【小问1详解】设年销售量为件,按利润的计算公式生产、两产品的年利润、分别为:,且;,且.【小问2详解】因为,则,故为增函数,又且,所以时,生产产品有最大利润:(万美元).又,且,所以时,生产产品有最大利润为460(万美元),综上,,令,得;令,得;令,得.由上知:当时,投资生产产品200件获得最大年利润;当时,投资生产产品100件获得最大年利润;当时,投资生产产品和产品获得的最大利润一样.22、(1)88.5万元(2)该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【解析】(1)先确定甲乙合作社投入量,再分别代入对应收益函数,最后求和得结果,(2)先根据甲收益函数,分类讨论,再根据对应函数单调性确定最值取法,最后比较大小确定最大值【详解】解:(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论