




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市顺义区第一中学高一数学第一学期期末考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某工厂设计了一款纯净水提炼装置,该装置可去除自来水中的杂质并提炼出可直接饮用的纯净水,假设该装置每次提炼能够减少水中50%的杂质,要使水中的杂质不超过原来的4%,则至少需要提炼的次数为()(参考数据:取)A.5 B.6C.7 D.82.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④3.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.4.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.5.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.6.已知则当最小时的值时A.﹣3 B.3C.﹣1 D.17.圆与圆的位置关系为()A.相离 B.相交C.外切 D.内切8.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知函数.若关于x的方程在上有解,则实数m的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是___________.12.若sinα<0且tanα>0,则α是第___________象限角13.函数(且)的定义域为__________14.已知,若存在定义域为的函数满足:对任意,,则___________.15.锐角中,分别为内角的对边,已知,,,则的面积为__________16.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.年,全世界范围内都受到“新冠”疫情的影响,了解某些细菌、病毒的生存条件、繁殖习性等对于预防疾病的传播、保护环境有极其重要的意义.某科研团队在培养基中放入一定量某种细菌进行研究.经过分钟菌落的覆盖面积为,经过分钟覆盖面积为,后期其蔓延速度越来越快;现菌落的覆盖面积(单位:)与经过时间(单位:)的关系有两个函数模型与可供选择.(参考数据:,,,,,,)(1)试判断哪个函数模型更合适,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多久培养基中菌落面积能超过?(结果保留到整数)18.已知(1)求函数的单调区间;(2)求证:时,成立.19.已知函数的定义域为A,的值域为B(1)求A,B;(2)设全集,求20.设函数是定义域为R的奇函数.(1)求;(2)若,求使不等式对一切恒成立的实数k的取值范围;(3)若函数的图象过点,是否存在正数,使函数在上的最大值为2,若存在,求出a的值;若不存在,请说明理由.21.已知向量,(1)若与垂直,求实数的值;(2)求向量在方向上的投影
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意列出相应的不等式,利用对数值计算可得答案.【详解】设经过次提炼后,水中的杂质不超过原来的4%,由题意得,得,所以至少需要5次提炼,故选:A.2、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.3、A【解析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【点睛】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.4、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D5、D【解析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.6、B【解析】由题目已知可得:当时,的值最小故选7、A【解析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系.【详解】圆,圆心,半径为;,圆心,半径为;两圆圆心距,所以相离.故选:A.8、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B9、D【解析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D10、C【解析】先对函数化简变形,然后由在上有解,可知,所以只要求出在上即可【详解】,由,得,所以,所以,即,由在上有解,可知,所以,得,氢实数m的取值范围是,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.12、第三象限角【解析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.13、【解析】根据对数的性质有,即可求函数的定义域.【详解】由题设,,可得,即函数的定义域为.故答案为:14、-2【解析】由已知可得为偶函数,即,令,由,可得,计算即可得解.【详解】对任意,,将函数向左平移2个单位得到,函数为偶函数,所以,令,由,可得,解得:.故答案为:.15、【解析】由已知条件可得,,再由正弦定理可得,从而根据三角形内角和定理即可求得,从而利用公式即可得到答案.【详解】,由得,又为锐角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案为.【点睛】三角形面积公式的应用原则:(1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化16、【解析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【点睛】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)应选模型为,理由见解析;(2)【解析】(1)根据增长速度可知应选,根据已知数据可构造方程组求得,进而得到函数模型;(2)根据函数模型可直接构造不等式,结合参考数据计算可得,由此可得结论.小问1详解】的增长速度越来越快,的增长速度越来越慢,应选模型为;则,解得:,,又,函数模型为;【小问2详解】由题意得:,即,,,,至少经过培养基中菌落面积能超过.18、(1)增区间为,减区间为;(2)证明见解析.【解析】(1)由题意可得函数的解析式为:,结合复合函数的单调性可得函数的增区间为,减区间为;(2)由题意可得原式,结合均值不等式的结论和三角函数的性质可得:,而均值不等式的结论是不能在同一个自变量处取得的,故等号不成立,即题中的结论成立.试题解析:(1)解:由已知,所以,令得,由复合函数的单调性得的增区间为,减区间为;(2)证明:时,,,,当时取等号,,
设,由得,且,从而,由于上述各不等式不能同时取等号,所以原不等式成立.19、(1),;(2).【解析】(1)由,可得定义域,由二次函数性质得得值域,即得;(2)根据集合运算法则计算【详解】(1)由得:,解得..∴,(2)由(1)得,∴.【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题20、(1)(2)(3)【解析】(1)根据是定义域为R的奇函数,由求解;(2),得到b的范围,从而得到函数的单调性,将对一切恒成立,转化为对一切恒成立求解;(3)根据函数的图象过点,求得b,得到,令,利用复合函数求最值的方法求解.【小问1详解】解:函数是定义域为R的奇函数,所以,解得,此时,满足;【小问2详解】因为,所以,解得,所以在R上是减函数,等价于,所以,即,又因为不等式对一切恒成立,所以对一切恒成立,所以,解得,所以实数k的取值范围是;【小问3详解】因为函数的图象过点,所以,解得,则,令,则,当时,是减函数,,因为函数在上的最大值为2,所以,即,解得,不成立;当时,是增函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会议品牌形象设计合同
- 桥梁工程的生态建设目标创新考核试卷
- 苗木独家采购协议
- 肉类副产品加工新技术对环境影响的评估考核试卷
- 电气设备在智能电网电力系统模拟与仿真中的应用考核试卷
- 石油产品运输安全考核试卷
- 窄轨机车车辆制造质量保证体系运行考核试卷
- 纺织品销售技巧与客户服务考核试卷
- 耐火土石矿山开采过程中的废水处理技术创新考核试卷
- 肉类加工企业流程再造与效率提升考核试卷
- 教育培训机构运营流程手册
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
- 山东铁投集团社会招聘笔试真题2023
- 2024小学语文新教材培训讲稿:一年级新教材修订概况及教材介绍
- 2024年江西省高考生物试卷(含答案)
- JJF(民航) 0114-2024 民用航空自动气象观测系统气压传感器校准规范
- 三级电子商务师测试试题库与答案
- 2023年高考历史真题新高考福建卷试题含答案解析
- DZ/T 0430-2023 固体矿产资源储量核实报告编写规范(正式版)
- 2024年中铁集装箱运输有限责任公司招聘笔试参考题库附带答案详解
- 物业管理中英文对照外文翻译文献
评论
0/150
提交评论