2024届江苏省无锡江阴市高一上数学期末预测试题含解析_第1页
2024届江苏省无锡江阴市高一上数学期末预测试题含解析_第2页
2024届江苏省无锡江阴市高一上数学期末预测试题含解析_第3页
2024届江苏省无锡江阴市高一上数学期末预测试题含解析_第4页
2024届江苏省无锡江阴市高一上数学期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡江阴市高一上数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知集合,则()A.0或1 B.C. D.或2.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角3.已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.4.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1005.设,则a,b,c的大小关系是A. B.C. D.6.若直线经过两点,且倾斜角为45°,则m的值为A. B.1C.2 D.7.已知函数fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)8.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.9.正方形中,点,分别是,的中点,那么A. B.C. D.10.已知幂函数的图象过,则下列求解正确的是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.12.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.13.已知则________14.已知函数,那么的表达式是___________.15.已知tanα=3,则sinα(cosα-sinα)=______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数最小正周期为.(1)求的值:(2)将函数的图象先向左平移个单位,然后向上平移1个单位,得到函数,若在上至少含有4个零点,求b的最小值.17.已知圆经过,两点,且圆心在直线:上.(Ⅰ)求圆的方程;(Ⅱ)若点在直线:上,过点作圆的一条切线,为切点,求切线长的最小值;(Ⅲ)已知点为,若在直线:上存在定点(不同于点),满足对于圆上任意一点,都有为一定值,求所有满足条件点的坐标.18.已知函数,实数且(1)设,判断函数在上的单调性,并说明理由;(2)设且时,的定义域和值域都是,求的最大值19.已知数列的前n项和为(1)求;(2)若,求数列的前项的和20.已知函数的图象的一部分如图所示:(1)求函数的解析式;(2)求函数图象的对称轴方程及对称中心21.设,函数(1)若,判断并证明函数的单调性;(2)若,函数在区间()上的取值范围是(),求的范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.2、D【解析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.3、D【解析】根据图象可得:,,,.,则.令,,,而函数.即可求解.【详解】解:函数,的图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,则.令,,,而函数在,单调递增.所以,则.故选:D.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.4、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.5、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.6、A【解析】由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列出方程求得的值.【详解】因为经过两点,的直线的倾斜角为45°,∴,解得,故选A【点睛】本题主要考查了直线的斜率与倾斜角的关系,属于基础题.7、C【解析】根据导数求出函数在区间上单调性,然后判断零点区间.【详解】解:根据题意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函数的零点定理可知,fx零点的区间为(2故选:C8、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A9、D【解析】由题意点,分别是,中点,求出,,然后求出向量即得【详解】解:因为点是的中点,所以,点得是的中点,所以,所以,故选:【点睛】本题考查向量加减混合运算及其几何意义,注意中点关系与向量的方向,考查基本知识的应用。属于基础题。10、A【解析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【详解】∵幂函数y=xα的图象过点(2,),∴2α,解得α,故f(x),即,故选A【点睛】本题考查了幂函数的定义,是一道基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较.【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法.12、【解析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.13、【解析】分段函数的求值,在不同的区间应使用不同的表达式.【详解】,故答案为:.14、【解析】先用换元法求出,进而求出的表达式.【详解】,令,则,故,故,故答案为:15、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)1(2)【解析】(1)利用平方关系、二倍角余弦公式、辅助角公式化简函数解析式,然后根据周期公式即可求解;(2)利用三角函数的图象变换求出的解析式,然后借助三角函数的图象即可求解.【小问1详解】解:,因为函数的最小正周期为,即,所以;【小问2详解】解:由(1)知,由题意,函数,令,即,因为在上至少含有4个零点,所以,即,所以的最小值为.17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根据题意,设出圆的标准方程,代入条件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小时,垂直于直线,据此可得结论;(Ⅲ)设,,列出相应等式化简,再利用点的任意性,列出方程组求解即可.【详解】(Ⅰ)设圆的方程为,根据题意有,解得,所以圆的方程为;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而当垂直于直线时,最小,此时,所以的最小值为;(Ⅲ)设,满足,假设的定值为,则,化简得,因为对于圆上任意一点上式都成立,所以,解得(舍),因此满足条件点的坐标为.【点睛】本题涉及圆与直线的综合应用,利用了数形结合等思想,考查了学生分析解决问题的能力,综合性较强.在答题时要注意:①线外一点到线上一点的距离中,垂线段最短;②解决任意性问题的关键是令含参部分的系数为0,最常见的就是过定点问题.18、(1)在上单调递增,理由见解析(2)【解析】(1)由定义法直接证明可得;(2)由题知是方程的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a的范围,再用韦达定理表示出所求,然后可解.【小问1详解】设,则,,,,故在上单调递增;【小问2详解】由(1)可得时,在上单调递增,的定义域和值域都是,,则是方程的不相等的两个正数根,即有两个不相等的正数根,则,解得,,,时,最大值为;19、(1);(2).【解析】(1)由条件求得数列是等差数列,由首项和公差求得.(2)由(1)求得通项,代入求得,分组求和求得.【详解】解:(1)因为,所以是公差为2,首项为2的等差数列所以(2)由(1)可知,因为,所以,所以20、(1);(2)对称轴,;对称中心为,【解析】(1)根据图形的最高点最低点,得到,以及观察到一个周期的长度为8,求出,在代入点的坐标即可求出,从而得到表达式;(2)利用正弦曲线的对称轴和对称中心,将看作整体进行计算即可.【详解】解:(1)由题图知,,,,又图象经过点,.,,(2)令,.,图象的对称轴,令,.图象的对称中心为,21、(1)在上递增,证明见解析.(2)【解析】(1)根据函数单调性的定义计算的符号,从而判断出的单调性.(2)对进行分类讨论,结合一元二次方程根的分布来求得的范围.【小问1详解】,当时,的定义域为,在上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论