版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市海淀清华附中高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④2.已知集合,,若,则a的取值范围是A B.C. D.3.在线段上任取一点,则此点坐标大于1的概率是()A. B.C. D.4.设a=,b=,c=,则a,b,c的大小关系是()A. B.C. D.5.若函数的三个零点分别是,且,则()A. B.C. D.6.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.7.函数的部分图像为()A. B.C. D.8.若,则的值为A. B.C. D.9.的值为A. B.C. D.10.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,正实数,满足,且,若在区间上的最大值为2,则________.12.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.13.在空间直角坐标系中,点在平面上的射影为点,在平面上的射影为点,则__________14.经过,两点的直线的倾斜角是__________.15.幂函数的图像在第___________象限.16.已知单位向量与的夹角为,向量的夹角为,则cos=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)写出函数的最小正周期及单调递减区间;(2)当时,函数的最大值与最小值的和为,求不等式的解集18.阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.19.已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.(可能用到的不等关系参考:若,且,则有)20.已知函数,,且求实数m的值;作出函数的图象并直接写出单调减区间若不等式在时都成立,求t的取值范围21.已知函数是定义在上的增函数,且.(1)求的值;(2)若,解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A2、D【解析】化简集合A,根据,得出且,从而求a的取值范围,得到答案详解】由题意,集合或,;若,则且,解得,所以实数的取值范围为故选D【点睛】本题主要考查了对数函数的运算性质,以及集合的运算问题,其中解答中正确求解集合A,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】设“所取点坐标大于1”为事件A,则满足A的区间为[1,3]根据几何概率的计算公式可得,故选B.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率4、C【解析】根据指数和幂函数的单调性比较大小即可.【详解】因为在上单调递增,在上单调递减所以,故.故选:C5、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理6、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.7、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D8、C【解析】由题意求得,化简得,再由三角函数的基本关系式,联立方程组,求得,代入即可求解.【详解】由,整理得,所以,又由三角函数的基本关系式,可得由解得,所以.故选C.【点睛】本题主要考查了三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】.故选B.10、A【解析】点,由中点坐标公式得中得为:,即.故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先画出函数图像并判断,再根据范围和函数单调性判断时取最大值,最后计算得到答案.【详解】如图所示:根据函数的图象得,所以.结合函数图象,易知当时在上取得最大值,所以又,所以,再结合,可得,所以.故答案为:【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.12、①.②.【解析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;13、【解析】因为点在平面上的射影为点,在平面上的射影为点,所以由两点间距离公式可得,故答案为.14、【解析】经过,两点的直线的斜率是∴经过,两点的直线的倾斜角是故答案为15、【解析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.16、【解析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【点睛】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为;递减区间为:;(2)【解析】(1)化函数为正弦型函数,求出它的最小正周期和单调递减区间;(2)根据时求得的最大值和最小值,由此求得的值,再求不等式的解集【详解】(1),∴,令,∴,∴函数的递减区间为:(2)由得:,∴,,∴,∴,∴,又,∴不等式的解集为【点睛】方法点睛:三角函数的一般性质研究:1.周期性:根据公式可求得;2.单调性:令,解出不等式,即可求出函数的单调递增区间;令,解出不等式,即可求出函数的单调递减区间.18、(1)见解析(2)见解析【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数.(2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,而,故即.点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具.19、(1)2;(2).【解析】(1)确定函数的对称轴,从而可得函数的单调性,利用的定义域和值域均是,建立方程,即可求实数的值;(2)由函数的单调性得出在单调递减,在单调递增,从而求出在上的最大值和最小值,进而求出实数的取值范围.【小问1详解】易知的对称轴为直线,故在上为减函数,∴在上单调递减,即,,代入解得或(舍去).故实数的值为2.【小问2详解】∵在是减函数,∴.∴在上单调递减,在上单调递增,又函数的对称轴为直线,∴,,又,∴.∵对任意的,总有,∴,即,解得,又,∴,即实数的取值范围为.20、(1)(2)详见解析,单调减区间为:;(3)【解析】由,代入可得m值;分类讨论,去绝对值符号后根据二次函数表达式,画出图象由题意得在时都成立,可得在时都成立,解得即可【详解】解:,由得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈从文《街》课件
- 银龙溪两岸护坡及堤顶道路工程施工组织设计方案
- 年产2000台玉米收获机技术改造项目可行性研究报告
- 法律保护我们的人格尊严课件
- 2015年重庆市B卷中考满分作文《我们携手走进友谊》
- 《条件随机场CRF》课件
- 《成长的烦恼》作文讲评课件
- 展览中心铝塑板安装施工协议
- 科技论文写作讲座课件
- 城市安全建设项目立项指南
- 2024(新高考2卷)英语试题详解解析 课件
- 《天气学原理》考试复习题库(含答案)
- 大庆2024年黑龙江大庆市龙凤区人才引进80人笔试历年典型考题及考点附答案解析
- 烟酒行转让合同范本
- 2024年高考数学模拟试卷附答案解析
- 荆楚民艺智慧树知到期末考试答案章节答案2024年湖北第二师范学院
- 穿脱隔离衣的流程及注意事项
- 外国文学智慧树知到期末考试答案章节答案2024年九江职业大学
- 拼多多营销总结报告
- 电子信息类专业《计算机网络》课程教学的改革与实践
- 钢板加固梁施工方案
评论
0/150
提交评论