版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年云南省大理州南涧县民族中学数学高一上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a2.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.3.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.4.已知函数,则不等式的解集为()A. B.C. D.5.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定6.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.7.已知,则a,b,c的大小关系为()A. B.C. D.8.已知指数函数是减函数,若,,,则m,n,p的大小关系是()A. B.C. D.9.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.3610.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若α⊥β,m⊂α,则m⊥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A.和 B.和C.和 D.和11.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.412.若过,两点的直线的倾斜角为,则y等于()A. B.C.1 D.5二、填空题(本大题共4小题,共20分)13.圆在点P(1,)处的切线方程为_____14.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.15.若,,,则的最小值为______.16.已知函数,那么_________.三、解答题(本大题共6小题,共70分)17.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.18.如图,甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积)(1)将你的裁剪方法用虚线标示在图中,并作简要说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论19.已知角的终边经过点(1)求的值;(2)求的值20.在平面直角坐标系中,圆经过三点(1)求圆的方程;(2)若圆与直线交于两点,且,求的值21.已知函数(且)的图象过点(1)求的值.(2)若.(i)求的定义域并判断其奇偶性;(ii)求的单调递增区间.22.已知是定义在上的偶函数,当时,(1)求;(2)求的解析式;(3)若,求实数a的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.2、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.3、C【解析】由题设有,所以,选C.4、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.5、B【解析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【点睛】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.6、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.7、B【解析】首先求出、,即可判断,再利用作差法判断,即可得到,再判断,即可得解;【详解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故选:B8、B【解析】由已知可知,再利用指对幂函数的性质,比较m,n,p与0,1的大小,即可得解.【详解】由指数函数是减函数,可知,结合幂函数的性质可知,即结合指数函数的性质可知,即结合对数函数的性质可知,即,故选:B.【点睛】方法点睛:本题考查比较大小,比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法,解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.9、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.10、B【解析】根据空间直线和平面平行、垂直的性质分别进行判断即可【详解】①若m⊥α,n∥α,则m⊥n成立,故①正确,②若α⊥γ,β⊥γ,则α∥β不成立,两个平面没有关系,故②错误③若α⊥β,m⊂α,则m⊥β不成立,可能m与β相交,故③错误,④若α∥β,β∥γ,m⊥α,则m⊥γ,成立,故④正确,故正确是①④,故选B【点睛】本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定和性质,考查学生的空间想象能力11、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题12、B【解析】根据斜率的定义和坐标表达式即可求得结果.【详解】,.【点睛】本题考查斜率的定义和坐标表达式,注意认真计算,属基础题.二、填空题(本大题共4小题,共20分)13、x-y+2=0【解析】圆,点在圆上,∴其切线方程为,整理得:14、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题15、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.16、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:3三、解答题(本大题共6小题,共70分)17、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),由两点式可得直线AB′的方程为,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.考点:两点式直线方程,对称问题.18、(1)见解析(2)正四棱柱的体积比正四棱锥的体积大【解析】1该四棱柱的底面为正方体,侧棱垂直底面,可知其由两个一样的正方形和四个完全相同的长方形组成,对图形进行切割,画出图形即可,画法不唯一;2正四棱柱的底面边长为2a,高为a,正四棱锥的底面边长为2a,高为h=(3a)解析:(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为2a,高为a的正四棱柱将正方形乙按图中虚线剪开,以两个长方形焊接成边长为2a的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一侧面,焊接成一个底面板长为2a,斜高为3a的正四棱锥(2)∵正四棱柱的底面边长为2a,高为a,∴其体积V1又∵正四棱锥的底面边长为2a,高为h=(3a)∴其体积V∵42即4>823,4故所制作的正四棱柱的体积比正四棱锥的体积大(说明:裁剪方式不唯一,计算的体积也不一定相等)点睛:本题考查了四棱锥和四棱柱的知识,需要掌握二者的特征以及其体积的求法,对于图形进行分割,画出图形即可,注意画法不唯一,结合体积公式求得体积,然后比较大小即完成解答19、(1),,;(2).【解析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得20、⑴⑵【解析】(1)利用圆的几何性质布列方程组得到圆的方程;(2)设出点A,B的坐标,联立直线与圆的方程,消去y,确定关于x的一元二次方程,已知的垂直关系,确定x1x2+y1y2=0,利用韦达定理求得a试题解析:⑴因为圆的圆心在线段的直平分线上,所以可设圆的圆心为,则有解得则圆C的半径为所以圆C的方程为⑵设,其坐标满足方程组:消去,得到方程由根与系数的关系可得,由于可得,又所以由①,②得,满足故21、(1);(2)(i)定义域为,是偶函数;(ii).【解析】(1)由可求得实数的值;(2)(i)根据对数的真数大于零可得出关于实数的不等式,由此可解得函数的定义域,然后利用函数奇偶性的定义可证明函数为偶函数;(ii)利用复合函数法可求得函数的增区间.【详解】(1)由条件知,即,又且,所以;(2).(i)由得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈从文《街》课件
- 银龙溪两岸护坡及堤顶道路工程施工组织设计方案
- 年产2000台玉米收获机技术改造项目可行性研究报告
- 法律保护我们的人格尊严课件
- 2015年重庆市B卷中考满分作文《我们携手走进友谊》
- 《条件随机场CRF》课件
- 《成长的烦恼》作文讲评课件
- 展览中心铝塑板安装施工协议
- 科技论文写作讲座课件
- 城市安全建设项目立项指南
- DL∕T 2033-2019 火电厂用高压变频器功率单元试验方法
- 2024(新高考2卷)英语试题详解解析 课件
- 《天气学原理》考试复习题库(含答案)
- 大庆2024年黑龙江大庆市龙凤区人才引进80人笔试历年典型考题及考点附答案解析
- 烟酒行转让合同范本
- 2024年高考数学模拟试卷附答案解析
- 荆楚民艺智慧树知到期末考试答案章节答案2024年湖北第二师范学院
- 穿脱隔离衣的流程及注意事项
- 外国文学智慧树知到期末考试答案章节答案2024年九江职业大学
- 拼多多营销总结报告
- 电子信息类专业《计算机网络》课程教学的改革与实践
评论
0/150
提交评论