2024届安徽省肥东高级中学高一数学第一学期期末含解析_第1页
2024届安徽省肥东高级中学高一数学第一学期期末含解析_第2页
2024届安徽省肥东高级中学高一数学第一学期期末含解析_第3页
2024届安徽省肥东高级中学高一数学第一学期期末含解析_第4页
2024届安徽省肥东高级中学高一数学第一学期期末含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省肥东高级中学高一数学第一学期期末注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则为()A. B.2C.3 D.或32.已知定义在上的偶函数,在上为减函数,且,则不等式的解集是()A. B.C. D.3.已知点落在角的终边上,且∈[0,2π),则的值为()A B.C. D.4.函数是偶函数且在上单调递减,,则的解集为()A. B.C D.5.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最合适的是()x1.992345.156.126y1.514.047.5112.0318.01A. B.C. D.6.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.设,则的大小关系()A. B.C. D.8.函数的零点个数为A.1 B.2C.3 D.49.下列函数中,以为最小正周期,且在上单调递增的是()A. B.C. D.10.等边三角形ABC的边长为1,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆:,为圆上一点,、、,则的最大值为______.12.在中,若,则的形状一定是___________三角形.13.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度14.经过,两点的直线的倾斜角是__________.15.函数的值域是__________16.已知函数,则______,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数图象经过点.(1)求幂函数的解析式;(2)试求满足的实数a的取值范围.18.已知非空集合,非空集合(1)若,求(用区间表示);(2)若,求m的范围.19.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时(尾/立方米)时,的值为2(千克/年);当时,是的一次函数;当(尾/立方米)时,因缺氧等原因,的值为0(千克/年).(1)当时,求函数的表达式;(2)当为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.20.已知定义域为的函数是奇函数.(1)求的解析式;(2)若恒成立,求实数的取值范围.21.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C2、D【解析】根据函数的性质,画出函数的图象,数形结合求出解集【详解】由题意,画出的图象如图,等价于,或,由图可知,不等式的解集为故选:D3、D【解析】由点的坐标可知是第四象限的角,再由可得的值【详解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故选:D【点睛】此题考查同角三角函数的关系,考查三角函数的定义,属于基础题4、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.5、B【解析】由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,逐一判断,选择与实际数据接近的函数得选项.【详解】解:由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,对于A,函数是线性增加的函数,与表中的数据增加趋势不符合,故A不正确;对于C,函数,当,与表中数据7.5的误差很大,不符合要求,故C不正确;对于D,函数,当,与表中数据4.04的误差很大,不符合要求,故D不正确;对于B,当,与表中数据1.51接近,当,与表中数据4.04接近,当,与表中数据7.51接近,所以,B选项的函数是最接近实际的一个函数,故选:B6、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D7、C【解析】判断与大小关系,即可得到答案.【详解】因为,,,所以.故选:C.【点睛】本题主要考查对数函数、指数函数的性质,关键是与中间量进行比较,然后得三个数的大小关系,属于基础题.8、C【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数.【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交点,也即有个零点.故选C.【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题.9、D【解析】根据最小正周期判断AC,根据单调性排除B,进而得答案.【详解】解:对于AC选项,,的最小正周期为,故错误;对于B选项,最小正周期为,在区间上单调递减,故错误;对于D选项,最小正周期为,当时,为单调递增函数,故正确.故选:D10、A【解析】直接利用向量的数量积定义进行运算,即可得到答案;详解】,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.12、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.13、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④14、【解析】经过,两点的直线的斜率是∴经过,两点的直线的倾斜角是故答案为15、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.16、①.15②.-3或【解析】根据分段函数直接由内到外计算即可求,当时,分段讨论即可求解.【详解】,,时,若,则,解得或(舍去),若,则,解得,综上,或,故答案为:15;-3或【点睛】本题主要考查了分段函数的解析式,已知自变量求函数值,已知函数值求自变量,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)把点的坐标代入函数解析式求出的值,即可写出的解析式;(2)根据在定义域上的单调性,把不等式化为关于的不等式组,求出解集即可【详解】(1)幂函数的图象经过点,,解得,幂函数;(2)由(1)知在定义域上单调递增,则不等式可化为解得,实数a的取值范围是.【点睛】本题考查了幂函数的定义与应用问题,属于容易题18、(1)(2)【解析】(1)分别解出集合A、B,再求;(2)由可得,列不等式即可求出m的范围.【小问1详解】由不等式的解为,即.由,即【小问2详解】由可知,,只需解得.即m的范围为.19、(1)(2),鱼的年生长量可以达到最大值12.5【解析】(1)根据题意得建立分段函数模型求解即可;(2)根据题意,结合(1)建立一元二次函数模型求解即可.【小问1详解】解:(1)依题意,当时,当时,是的一次函数,假设且,,代入得:,解得.所以【小问2详解】解:当时,,当时,所以当时,取得最大值因为所以时,鱼的年生长量可以达到最大值12.5.20、(1);(2).【解析】(1)由是奇函数可得,从而可求得值,即可求得的解析式;(2)由复合函数的单调性判断在上单调递减,结合函数的奇偶性将不等式恒成立问题转化为,令,利用二次函数的性质求得的最大值,即可求得的取值范围【详解】(1)因为函数为奇函数,所以,即,所以,所以,可得,函数.(2)由(1)知所以在上单调递减.由,得,因为函数是奇函数,所以,所以,整理得,设,,则,当时,有最大值,最大值为.所以,即.【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.21、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论