2024届河南省林州市林虑中学高一上数学期末复习检测试题含解析_第1页
2024届河南省林州市林虑中学高一上数学期末复习检测试题含解析_第2页
2024届河南省林州市林虑中学高一上数学期末复习检测试题含解析_第3页
2024届河南省林州市林虑中学高一上数学期末复习检测试题含解析_第4页
2024届河南省林州市林虑中学高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省林州市林虑中学高一上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且2.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.3.已知命题“,”是假命题,则实数的取值范围为()A. B.C. D.4.下图是一几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,分别为的中点.在此几何体中,下列结论中错误的为A.直线与直线共面 B.直线与直线是异面直线C.平面平面 D.面与面的交线与平行5.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.6.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b7.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+8.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.9.已知集合,集合为整数集,则A. B.C. D.10.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为___________.12.计算:______13.已知点,,在函数的图象上,如图,若,则______.14.已知函数,若方程有4个不同的实数根,则的取值范围是____15.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________16.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,求实数的取值范围18.已知函数,且点在函数图象上.(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;(2)若方程有两个不相等的实数根,求实数的取值范围.19.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?20.已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A、B两点(1)求公共弦AB的长;(2)求经过A、B两点且面积最小的圆的方程21.计算下列各式的值.(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..2、C【解析】由已知可求圆心角的大小,根据弧长公式即可计算得解【详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【点睛】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题3、D【解析】由题意可知,命题“,”是真命题,再利用一元二次不等式的解集与判别式的关系即可求出结果.【详解】由于命题“,”是假命题,所以命题“,”是真命题;所以,解得.故选:D.【点睛】本题考查了简易逻辑的判定、一元二次不等式的解集与判别式的关系,考查了推理能力与计算能力,属于基础题4、C【解析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确故答案选C5、B【解析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B6、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D7、B【解析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【点睛】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.8、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化9、A【解析】,选A.【考点定位】集合的基本运算.10、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:12、【解析】根据幂的运算法则,根式的定义计算【详解】故答案为:13、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.14、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.15、【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.16、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)化简后由对数函数的性质求解(2)不等式恒成立,转化为最值问题求解【小问1详解】故的值域为【小问2详解】∵不等式对任意实数恒成立,∴令,∵,∴设,,当时,取得最小值,即∴,即故的取值范围为18、(1),图象见解析(2)【解析】(1)先根据点在函数的图象上求出,再分段画出函数的图象;(2)将问题转化为直线与函数的图象有两个公共点,在同一坐标系中作出图象,利用图象进行求解.【小问1详解】解:因为点在函数的图象上,所以,解得,即,其图象如图所示:【小问2详解】解:将化为,因为方程有两个不相等的实数根,所以直线与函数的图象有两个公共点,在同一坐标系中作出直线与函数的图象(如图所示),由图象,得,即,即的取值范围是.19、(1)(2)72【解析】(1)由题意可得,当且时,,当且时,,从而可求得结果,(2)根据已知条件,结合二次函数的性质,以及基本不等式即可求得答案【小问1详解】由题意得,当且时,,当且时,,所以小问2详解】当当且时,,所以当时,,当且时,,当且仅当,即时取等号,综上,该厂年产量为72千件时,该厂在这一商品的生产中所获利润最大20、(1)(2)(x+2)2+(y-1)2=5.【解析】(1)直接把两圆的方程作差消去二次项即可得到公共弦所在的直线方程,利用点到直线距离公式以及勾股定理可得结果;(2)经过A、B两点且面积最小的圆就是以为直径的圆,求出中点坐标及的长度,则以为直径的圆的方程可求.【详解】(1)圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=方程相减,可得得x-2y+4=0,此为公共弦AB所在的直线方程圆心C1(-1,-1),半径r1=.C1到直线AB的距离为d=故公共弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论