版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西南宁第二中学数学高一上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则()A. B.3C. D.2.直线与圆相切,则的值为()A. B.C. D.3.函数的定义域是A. B.C. D.4.设函数与的图象的交点为,,则所在的区间是A. B.C. D.5.终边在y轴上的角的集合不能表示成A. B.C. D.6.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.7.设,,,则的大小关系为A. B.C. D.8.三个数的大小关系是()A. B.C. D.9.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}10.已知函数(,,,)的图象(部分)如图所示,则的解析式是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象12.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.13.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________14.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为2,高为,则球的表面积为________15.幂函数为偶函数且在区间上单调递减,则________,________.16.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,求的定义域;(2)若函数只有一个零点,求的取值范围.18.已知函数.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集.19.整治人居环境,打造美丽乡村,某村准备将一块由一个半圆和长方形组成的空地进行美化,如图,长方形的边为半圆的直径,O为半圆的圆心,,现要将此空地规划出一个等腰三角形区域(底边)种植观赏树木,其余的区域种植花卉.设.(1)当时,求的长;(2)求三角形区域面积的最大值.20.已知为坐标原点,,,若(1)求函数的对称轴方程;(2)当时,若函数有零点,求的范围.21.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【详解】解:,则令,得,所以.故选:D.2、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D3、B【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.4、A【解析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A5、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.6、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.7、B【解析】利用指数函数与对数函数的单调性判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A9、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.10、C【解析】根据图象可知,利用正弦型函数可求得;根据最大值和最小值可确定,利用及可求得,从而得到函数解析式.【详解】由图象可知,的最小正周期:又又,且,,即,本题正确选项:【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确由最大值和最小值确定;由周期确定;通常通过最值点来进行求解,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;12、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).13、①.②.【解析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;14、【解析】首先判断正三棱柱外接球的球心,即上下底面正三角形中心连线的中点,然后构造直角三角形求半径,代入公式求解.【详解】如图:设和分别是上下底面等边三角形的中心,由题意可知连线的中点就是三棱柱外接球的球心,连接,是等边三角形,且,,,球的表面积.故答案为:【点睛】本题考查求几何体外接球的表面积的问题,意在考查空间想象能力和转化与化归和计算能力,属于基础题型.15、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.16、【解析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【点睛】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.
偶函数的性质:;奇函数性质:;
若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)当时,求的解析式,令真数位置大于,解不等式即可求解;(2)由题意可得,整理可得只有一解,分别讨论,时是否符合题意,再分别讨论和有且只有一个是方程①的解,结合定义域列不等式即可求解.【小问1详解】当时,,由,即,因为,所以.故的定义域为.【小问2详解】因为函数只有一个零点,所以关于的方程①的解集中只有一个元素.由,可得,即,所以②,当时,,无意义不符合题意,当,即时,方程②的解为.由(1)得的定义域为,不在的定义域内,不符合题意.当是方程①的解,且不是方程①的解时,解得:,当是方程①的解,且不是方程①的解时,解得:且,无解.综上所述:的取值范围是.18、(1).(2)见解析;(3)【解析】(1)根据对数函数的定义,列出关于自变量x的不等式组,求出的定义域;(2)由函数奇偶性的定义,判定在定义域上的奇偶性;(3)化简,根据对数函数的单调性以及定义域,求出不等式>1的解集.试题解析:(1)要使函数有意义.则,解得.故所求函数的定义域为(2)由(1)知的定义域为,设,则.且,故为奇函数.(3)因为在定义域内是增函数,因为,所以,解得.所以不等式的解集是19、(1)(2)【解析】(1)利用三角函数表达出的长;(2)用的三角函数表达出三角形区域面积,利用换元法转化为二次函数,求出三角形区域面积的最大值.【小问1详解】设MN与AB相交于点E,则,则,故的长为【小问2详解】过点P作PF⊥MN于点F,则PF=AE=,而MN=ME+EN=,则三角形区域面积为,设,因为,所以,故,而,则,故当时,取得最大值,故三角形区域面积的最大值为20、(1),(2)【解析】(1)先利用数量积的坐标表示以及三角恒等变换化简三角函数得,再根据正弦函数的对称性即可得出结论;(2)由题意得有解,求出函数在区间上的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- YC/T 617-2024卷烟质量市场反馈信息分析与处理规范
- 2025版借款垫资风险控制合作协议范本3篇
- 2025年度智能电网项目可研咨询服务协议正范文本3篇
- 学校化粪池维修工程协议
- 2025版文化旅游项目建议书编制及运营管理合同3篇
- 徒步班组施工合同
- 保险服务标准化管理办法
- 通信设备招投标法规解析
- 电子产品采购招投标改进策略
- 商业广场施工合作协议
- 猪场配怀工作安排方案设计
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
- 安全生产事故举报奖励制度
- 冠心病健康教育完整版课件
- 永久避难硐室安装施工组织措施
- 元旦节前安全教育培训-教学课件
- 国家开放大学《理工英语1》单元自测8试题答案
- 芯片工艺流程课件1
- 人教版八年级下册生物期末测试卷带答案
评论
0/150
提交评论