版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二、空间与图形
矩形、菱形、正方形目录中考目标1知识概要2基本练习3范例精析4一、中考目标矩形、菱形、正方形掌握矩形、菱形、正方形的概念 b探索并掌握矩形、菱形、正方形的有关性质 c探索并掌握四边形是矩形、菱形、正方形的条件 c了解平行四边形、矩形、菱形、正方形的关系 a知道任意个三角形、四边形或正方形可以镶嵌平面,并运用这几种属性进行简单的镶嵌设计 c二、知识概要1.概念四边形矩形平行四边形菱形正方形二、知识概要性质判定边两组对边分别平行两组对边分别相等有一个角是直角的平行四边形是矩形角矩形的四个角都是直角有三个角是直角的四边形是矩形对角线矩形的两条对角线相等对角线相等的平行四边形是矩形推论直角三角形斜边上的中线等于斜边的一半如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形2.性质:矩形二、知识概要性质判定边菱形的四条边都相等①一组邻边相等的平行四边形,②四条边都相等的四边形是菱形.角①对角相等②邻角互补对角线菱形的两条对角线互相垂直,并且每条对角线平分一组对角对角线互相垂直的平行四边形是菱形2.性质:菱形二、知识概要性质判定边正方形的四条边都相等有一组邻边相等的矩形是正方形.角正方形的四个角都是直角.有一个角是直角的菱形是正方形.对角线正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.①对角线相等的菱形是正方形,②对角线互相垂直的矩形是正方形.2.性质:正方形三、基本练习填空题如图,根据四边形的不稳定性制作边长为16cm的可活动的菱形衣架,若墙上钉子间的距离AB=BC=16cm,则∠1=_____度。已知,矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动转动,当它转动一周时(A→A’),顶点A所经过的路线长等于_________。1206π
三、基本练习填空题如图,已知正方形纸片ABCD,M,N分别是AD,BC的中点,把BC向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=________度。30三、基本练习选择题如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D’处,那么tan∠BAD’等于()(A)1
(B) (C)
(D)2矩形ABCD的顶点A,B,C,D按照顺时针方向排列,若在平面直角坐标系中,B,D两点对应的坐标分别是(2,0),(0,0),且A,C两点关于x轴对称,则C点对应的坐标是()
(A)(1,1) (B)(1,-1) (C)(1,-2) (D)(,-)BB三、基本练习选择题如图,有一块矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()(A)4
(B)6 (C)8
(D)10C四、范例精析如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的定点分别在正方形MNPQ的4条边的小方格的顶点上。(1)设正方形MNPQ网格中
每个小方格的边长为1,求:
①△ABQ,△BCM,△CDN,
△ADP的面积
②正方形ABCD的面积(2)设MB=a,BQ=b,利用这个图形中直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程。四、范例精析如图,在△ABC中,∠ABC=90°,BC的中垂线DE交BC于点D,交AB于点E,F在DE的延长线上,并且AF=CE.(1)证明:四边形ACEF是平行四边形(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;(3)四边ACEF有可能是正方形吗?请证明你的结论。四、范例精析探究下列问题:(1)如图①,在△ABC中,CP⊥AB于点P,证明AC2-BC2=AP2-BP2;(2)如图②,在四边形ABCD中,AC⊥BD,垂足为P,猜一猜AB,BC,CD,DA之间有何数量关系,用式子表示出来(不必说明理由);(3)如图③,在矩形ABCD中,P为内部任意一点,请猜想出AP,BP,CP,DP之间的数量关系,并证明之。四、范例精析如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6。(1)如图①,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,设为E,求折痕CG所在直线的解析式。四、范例精析
(2)如图②,在OC上任取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E’。①求折痕AD所在直线的解析式;②再作E’F//AB,交AD于点F,若抛物线过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数。四、范例精析
(3)如图③,在OC,OA上选取适当的点D’,G’,使纸片沿D’G’翻折后,点O落在BC边上,记为E’’。请你猜想:折痕D’G’所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想。四、范例精析正方形通过剪切可以拼成三角形(如图①)。方法如下:仿上例用图示的方法,解答下列问题:操作设计:(1)如图②,对直角三角形,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋修缮合同范本
- 泥水工程施工分包协议
- 工业齿轮油供应合同
- 2024个人担保借款合同(附借据)
- 城市轨道交通与城市老年人福利的整合考核试卷
- 公共航站楼设施消防巡查管理考核试卷
- 广告投放策略与实施规范考核试卷
- 商业用房转让合同范例
- 新版豇豆种植合同模板
- 灯具销售长期合同模板
- 2023年中国铁路成都局集团有限公司招聘考试真题
- 2024保密教育测试题含答案(综合题)
- 广东省深圳市福田区红岭教育集团2024-2025学年七年级上学期期中考试数学试卷
- 上海市2020-2021学年七年级下学期数学校本作业133同位角内错角同旁内角
- 2024年第三届浙江技能大赛(供应链管理赛项)理论考试题库(含答案)
- 2024年广西公需科目参考答案
- 2024-2030年航空航天专用刀具行业市场现状供需分析及投资评估规划分析研究报告
- 2024年小学少先队工作总结参考(五篇)
- 封窗安全事故免责协议书范文
- 2024秋国开《现代教育管理专题》平时作业1-4答案
- 【7道人教版期中】安徽省怀宁县2023-2024学年七年级上学期期中考试道德与法治试卷(含详解)
评论
0/150
提交评论