版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省驻马店市正阳县高级中学高一数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.已知全集,集合,集合,则集合A. B.C. D.2.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.3.设是互不重合的平面,m,n是互不重合的直线,给出下面四个说法:①若,,则;②若,,则;③若,,则;④若,,,则.其中所有错误说法的序号是()A.①③ B.①④C.①③④ D.②③④4.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.645.已知,均为正实数,且,则的最小值为A.20 B.24C.28 D.326.设是两个单位向量,且,那么它们的夹角等于()A. B.C. D.7.若,,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限8.以,为基底表示为A. B.C. D.9.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为A. B.C. D.10.已知全集,集合,,则等于()A. B.C. D.11.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.12.某几何体的三视图都是全等图形,则该几何体一定是()A.圆柱 B.圆锥C.三棱锥 D.球体二、填空题(本大题共4小题,共20分)13.经过两条直线和的交点,且垂直于直线的直线方程为__________14.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______15.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.16.若偶函数在区间上单调递增,且,,则不等式的解集是___________.三、解答题(本大题共6小题,共70分)17.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上的最大值为3,求的值.18.(1)化简与求值:lg5+lg2++21n(π-2)0:(2)已知tanα=3.求的值.19.计算下列各式:(1)(2)20.已知函数的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)若为第二象限角且,求的值.21.化简求值:(1);(2).22.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】,所以,故选A.考点:集合运算.2、C【解析】先由三角函数的最值得或,再由得,进而可得单调增区间.【详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【点睛】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.3、C【解析】①利用平面与平面的位置关系判断;②利用线面垂直的性质定理判断;③利用直线与直线的位置关系判断;④利用面面垂直的性质定理判断.【详解】①若,,则或相交,故错误;②若,,则可得,故正确;③若,,则,故错误;④若,,,当时,,故错误.故选:C4、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.5、A【解析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式性质,“一正、二定、三相等”.6、C【解析】由条件两边平方可得,代入夹角公式即可得到结果.【详解】由,可得:,又是两个单位向量,∴∴∴它们的夹角等于故选C【点睛】本题考查单位向量的概念,向量数量积的运算及其计算公式,向量夹角余弦的计算公式,以及已知三角函数求角,清楚向量夹角的范围7、D【解析】本题考查三角函数的性质由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为8、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.9、A【解析】所求的全面积之比为:,故选A.10、D【解析】先求得集合B的补集,再根据交集运算的定义,即可求得答案.【详解】由题意得:,所以,故选:D11、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.12、D【解析】任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆【详解】球、长方体、三棱锥、圆锥中,任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是等圆,故答案为:D【点睛】本题考查简单空间图形的三视图,本题解题的关键是看出各个图形的在任意方向上的视图,本题是一个基础题二、填空题(本大题共4小题,共20分)13、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.14、【解析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【点睛】本题考查复合函数的单调性的应用,考查转化思想以及计算能力15、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.16、【解析】根据题意,结合函数的性质,分析可得在区间上的性质,即可得答案.【详解】因为偶函数在区间上单调递增,且,,所以在区间上单调上单调递减,且,所以的解集为.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.18、(1);(2)-2【解析】(1)利用根式和对数运算求解;(2)利用诱导公式和商数关系求解.【详解】解:(1),,,;(2)原式,,因为,所以原式.19、(1);(2).【解析】(1)运用指数幂运算性质进行计算即可;(2)运用对数的运算公式,结合换底公式进行求解即可.【小问1详解】原式;【小问2详解】原式.20、(1);(2).【解析】(1)根据图象可得周期,故.再根据图象过点可得.最后根据函数的图象过点可求得,从而可得解析式.(2)由题意可得,进而可求得和,再按照两角和的正弦公式可求得的值试题解析:(1)由图可知,周期,∴.又函数的图象过点,∴,∴,∴,∵,∴∴,∵函数图象过点,∴,∴,所以.(2)∵为第二象限角且,∴,∴,,∴点睛:已知图象求函数解析式的方法(1)根据图象得到函数的周期,再根据求得(2)可根据代点法求解,代点时一般将最值点的坐标代入解析式;也可用“五点法”求解,用此法时需要先判断出“第一点”的位置,再结合图象中的点求出的值(3)在本题中运用了代点的方法求得的值,一般情况下可通过观察图象得到的值21、(1)(2)【解析】(1)根据根式的性质,指数运算公式,对数运算公式化简计算;(2)根据诱导公式和同角关系化简.【小问1详解】原式.【小问2详解】原式.22、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100时,生产乙设备的最大年利润为2300(万元)(y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三农发展中的土地利用与规划手册
- 云计算技术研发合作框架协议
- 企业级客户关系管理系统开发及服务合同
- 农田水利工程劳务承包协议书
- 教育行业智能课堂与在线教育解决方案
- 非营利机构在线课程录制合同
- 企业数字化转型战略规划合作协议
- 物业管理公司与业主委员会合同
- 初始合伙人股权分配协议书
- 2025瓷砖产品购销合同模板一
- GB/T 13384-2008机电产品包装通用技术条件
- 《中考体育项目跳绳》教案
- 增服叶酸预防神经管缺陷理论知识考核试题及答案
- 新业娱乐安全评价报告
- 医保工作自查表
- 调休单、加班申请单
- 小学-英语-湘少版-01-Unit1-What-does-she-look-like课件
- 单证管理岗工作总结与计划
- 安全安全隐患整改通知单及回复
- 国有检验检测机构员工激励模式探索
- 采购部年终总结计划PPT模板
评论
0/150
提交评论