2023-2024学年山西省运城市临晋中学高一数学第一学期期末含解析_第1页
2023-2024学年山西省运城市临晋中学高一数学第一学期期末含解析_第2页
2023-2024学年山西省运城市临晋中学高一数学第一学期期末含解析_第3页
2023-2024学年山西省运城市临晋中学高一数学第一学期期末含解析_第4页
2023-2024学年山西省运城市临晋中学高一数学第一学期期末含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山西省运城市临晋中学高一数学第一学期期末注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围为()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)2.若向量,则下列结论正确的是A. B..C. D.3.函数的图象如图所示,为了得到函数的图象,可以把函数的图象A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)4.若存在正数x使成立,则a的取值范围是A. B.C. D.5.已知直线,,若,则实数的值为A.8 B.2C. D.-26.已知为奇函数,当时,,则()A.3 B.C.1 D.7.令,,,则三个数、、的大小顺序是()A. B.C. D.8.已知,求的值()A. B.C. D.9.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.10.已知,,c=40.1,则()A. B.C. D.11.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.12.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________14.已知,,则函数的值域为______15.设且,函数,若,则的值为________16.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足,.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?18.已知,(1)求的值;(2)求的值19.已知角的终边经过点,,,求的值.20.已知函数是二次函数,,(1)求的解析式;(2)解不等式21.(1)计算:;(2)计算:22.计算下列各式的值.(1);(2).

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由方程f(x)=a,得到x1,x2关于x=﹣1对称,且x3x4=1;化简,利用数形结合进行求解即可【详解】作函数f(x)的图象如图所示,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0,即log2x3x4=0,则x3x4=1;当|log2x|=1得x=2或,则1<x4≤2;≤x3<1;故;则函数y=﹣2x3+,在≤x3<1上为减函数,则故当x3=取得y取最大值y=1,当x3=1时,函数值y=﹣1.即函数取值范围(﹣1,1]故选B【点睛】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于中档题2、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行3、C【解析】根据函数的图象,设可得再根据五点法作图可得故可以把函数的图象先向左平移个单位,得到的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到函数的图象,故选C4、D【解析】根据题意,分析可得,设,利用函数的单调性与最值,即可求解,得到答案【详解】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选D【点睛】本题主要考查了函数单调性的应用,以及不等式的有解问题,其中解答中合理把不等式的有解问题转化为函数的单调性与最值问题是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题5、A【解析】利用两条直线平行的充要条件求解【详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【点睛】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用6、B【解析】根据奇偶性和解析式可得答案.【详解】由题可知,故选:B7、D【解析】由已知得,,,判断可得选项.【详解】解:由指数函数和对数函数的图象可知:,,,所以,故选:D【点睛】本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于中档题.8、A【解析】利用同角三角函数的基本关系,即可得到答案;【详解】,故选:A9、C【解析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.10、A【解析】利用指对数函数的性质判断指对数式的大小.【详解】由,∴.故选:A.11、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C12、A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①.②.【解析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;14、【解析】,又,∴,∴故答案为15、【解析】根据函数的解析式以及已知条件可得出关于实数的等式,由此可解得实数的值.【详解】因为,且,则.故答案为:.16、【解析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果.【详解】由弧长公式可得,可得,所以,由和线段所围成的弓形的面积为,而勒洛三角形由三个全等的弓形以及一个正三角形构成,因此,该勒洛三角形的面积为.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)88.5万元(2)该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【解析】(1)先确定甲乙合作社投入量,再分别代入对应收益函数,最后求和得结果,(2)先根据甲收益函数,分类讨论,再根据对应函数单调性确定最值取法,最后比较大小确定最大值【详解】解:(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个个合作社的总收益为:(万元)(2)甲合作社的投入为万元,则乙合作社的投入为万元,当时,则,.令,得,则总收益为,显然当时,函数取得最大值,即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元、当时,则,则,则在上单调递减,.即此时甲、乙总收益小于87万元.又,∴该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【点睛】本题考查利用分段函数模型求函数最值,考查基本分析求解能力,属中档题.18、(Ⅰ);(Ⅱ)【解析】解:(Ⅰ)由sin﹣2cos=0,得tan=2∴tanx=;(Ⅱ)===(﹣)+1=19、.【解析】利用三角函数的定义可得,进而可求,利用同角关系式可求,再利用两角和的正切公式即得.【详解】∵角的终边经过点,∴,,∵,,∴,,∴20、(1)(2)【解析】(1)根据得对称轴为,再结合顶点可求解;(2)由(1)得,然后直接解不等式即可.【小问1详解】由,知此二次函数图象的对称轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论