![2023-2024学年广东省兴宁市水口中学高一数学第一学期期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/20/18/wKhkGWVzx2-APscEAAHQpxlei98202.jpg)
![2023-2024学年广东省兴宁市水口中学高一数学第一学期期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/20/18/wKhkGWVzx2-APscEAAHQpxlei982022.jpg)
![2023-2024学年广东省兴宁市水口中学高一数学第一学期期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/20/18/wKhkGWVzx2-APscEAAHQpxlei982023.jpg)
![2023-2024学年广东省兴宁市水口中学高一数学第一学期期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/20/18/wKhkGWVzx2-APscEAAHQpxlei982024.jpg)
![2023-2024学年广东省兴宁市水口中学高一数学第一学期期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/20/18/wKhkGWVzx2-APscEAAHQpxlei982025.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省兴宁市水口中学高一数学第一学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,则的值为()A. B.C. D.2.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定3.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.4.终边在x轴上的角的集合为()A. B.C. D.5.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面6.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.8.已知等比数列满足,,则()A. B.C. D.9.下列函数是幂函数的是()A. B.C. D.10.已知圆和圆,则两圆的位置关系为A.内含 B.内切C.相交 D.外切二、填空题:本大题共6小题,每小题5分,共30分。11.已知是内一点,,记的面积为,的面积为,则__________12.若函数在内恰有一个零点,则实数a的取值范围为______13.圆的圆心坐标是__________14.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________15.函数的定义域是_____________16.已知函数,,那么函数图象与函数的图象的交点共有__________个三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(且)是定义域为R的奇函数(Ⅰ)求t的值;(Ⅱ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由18.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值19.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.20.已知函数.(1),,求的单调递减区间;(2)若,,的最大值是,求的值21.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【点睛】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.2、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D3、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A4、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.5、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.6、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C7、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.8、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.9、C【解析】由幂函数定义可直接得到结果.【详解】形如的函数为幂函数,则为幂函数.故选:C.10、B【解析】由于圆,即
表示以为圆心,半径等于1的圆圆,即,表示以为圆心,半径等于3的圆由于两圆的圆心距等于等于半径之差,故两个圆内切故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故12、【解析】根据实数a的正负性结合零点存在原理分类讨论即可.【详解】当时,,符合题意,当时,二次函数的对称轴为:,因为函数在内恰有一个零点,所以有:,或,即或,解得:,或,综上所述:实数a的取值范围为,故答案为:13、【解析】根据圆的标准方程,即可求得圆心坐标.【详解】因为圆所以圆心坐标为故答案为:【点睛】本题考查了圆的标准方程与圆心的关系,属于基础题.14、【解析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:15、.【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.16、8【解析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)t=2,(Ⅱ)不存在【解析】(Ⅰ)由题意f(0)=0,可求出t的值;(Ⅱ)假设存在正数符合题意,由函数的图象过点可得,得到的解析式,设,得到关于的解析式,然后对值进行讨论,看是否有满足条件的的值.【详解】解:(Ⅰ)因为f(x)是定义域为R的奇函数,∴f(0)=0,∴t=2,经检验符合题意,所以;(Ⅱ)假设存在正数符合题意,因为函数的图象过点,所以,解得,则,设,则,因为,所以,记,,函数在上的最大值为0,∴(ⅰ)若,则函数在有最小值为1,对称轴,∴,所以,故不合题意;(ⅱ)若,则函数在上恒成立,且最大值为1,最小值大于0,①,又此时,又,故无意义,所以应舍去;②,无解,综上所述:故不存在正数,使函数在上的最大值为018、(1)(2)【解析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,令,则,,又,,解得,即,所以函数的零点为【小问2详解】解:因为,,令,则,,,对称轴,当,即时,,;②当,即时,,(舍;综上:实数的值为19、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足,解得,即函数的定义域为(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题20、(1),;(2).【解析】(1)先利用三角恒等变换公式化简函数,通过余弦函数的单调性求解即可.(2)利用函数的最大值为,由正弦函数的性质结合辅助角公式求解即可【详解】(1),由,得,又,所以单调的单调递减区间为,(2)由题意,由于函数的最大值为,即,从而,又,所以【点睛】方法点睛:函数的性质:(1).(2)周期(3)由求对称轴,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业市场营销宣传协议
- 2025年传统工艺振兴战略谅解协议
- 2025年中学食品安全监管协议
- 2025年公共环境策划改善协议
- 2025年导师学员携手共进协议书
- 2025年度股权合伙财产分割协议范例
- 江苏省2025年土地使用权互换合同
- 2025年临时办公设施租赁合同
- 2025年企业股权融资协议书规范文本
- 2025年商业地产合作协议标准版
- 门诊诊所运行管理制度
- 湖南省怀化市2024-2025学年九年级上学期期末化学试题(含答案)
- “5E”教学模式下高中数学教学实践研究
- 《医学影像检查技术学》课件-踝X线摄影
- 急救药品知识培训内容
- 电工基础知识(全套)
- 体育馆施工图设计合同
- 2025年福建省漳州台商投资区招聘非占编人员历年高频重点提升(共500题)附带答案详解
- 四川省成都市成华区2024年中考语文二模试卷附参考答案
- 《西兰花全程质量安全控制技术规范》
- 2025年临床医师定期考核试题中医知识复习题库及答案(200题)
评论
0/150
提交评论