![2023-2024学年湖南省十四校联考高一上数学期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view11/M00/34/3E/wKhkGWVz6CSATARcAAHmKDQXnKg406.jpg)
![2023-2024学年湖南省十四校联考高一上数学期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view11/M00/34/3E/wKhkGWVz6CSATARcAAHmKDQXnKg4062.jpg)
![2023-2024学年湖南省十四校联考高一上数学期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view11/M00/34/3E/wKhkGWVz6CSATARcAAHmKDQXnKg4063.jpg)
![2023-2024学年湖南省十四校联考高一上数学期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view11/M00/34/3E/wKhkGWVz6CSATARcAAHmKDQXnKg4064.jpg)
![2023-2024学年湖南省十四校联考高一上数学期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view11/M00/34/3E/wKhkGWVz6CSATARcAAHmKDQXnKg4065.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省十四校联考高一上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.2.若偶函数在区间上单调递增,且,则不等式的解集是()A. B.C. D.3.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.4.若集合,则()A. B.C. D.5.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.6.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-47.化简:()A B.C. D.8.基本再生数R0与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天9.已知集合,集合,则()A.0 B.C. D.10.设集合,,则集合与集合的关系是()A. B.C. D.11.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+12.已知,,则直线与直线的位置关系是()A.平行 B.相交或异面C.异面 D.平行或异面二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,且,则_______.14.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx215.已知,则的大小关系是___________________.(用“”连结)16.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知是偶函数,是奇函数.(1)求,的值;(2)判断的单调性;(不需要证明)(3)若不等式在上恒成立,求实数的取值范围.18.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a19.年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.已知某口罩的固定成本为万元,每生产万箱,需另投入成本万元,为年产量单位:万箱;已知通过市场分析,如若每万箱售价万元时,该厂年内生产的商品能全部售完.利润销售收入总成本(1)求年利润与万元关于年产量万箱的函数关系式;(2)求年产量为多少万箱时,该口罩生产厂家所获得年利润最大20.已知函数是R上的奇函数.(1)求a的值,并判断的单调性;(2)若存在,使不等式成立,求实数b的取值范围.21.已知函数是奇函数(1)求a的值,并根据定义证明函数在上单调递增;(2)求的值域22.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B2、D【解析】由偶函数定义可确定函数在上的单调性,由单调性可解不等式.【详解】由于函数是偶函数,在区间上单调递增,且,所以,且函数在上单调递减.由此画出函数图象,如图所示,由图可知,的解集是.故选:D.【点睛】本题考查函数的奇偶性与单调性,属于基础题.3、C【解析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【点睛】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题4、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。5、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.6、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.7、D【解析】利用三角函数诱导公式、同角三角函数的基本关系化简求值即可.【详解】,故选:D8、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.9、B【解析】由集合的表示方法以及交集的概念求解.【详解】由题意,集合,,∴.故选:B10、D【解析】化简集合、,进而可判断这两个集合的包含关系.【详解】因为,,因此,.故选:D.11、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B12、D【解析】由直线平面,直线在平面内,知,或与异面【详解】解:直线平面,直线在平面内,,或与异面,故选:D【点睛】本题考查平面的基本性质及其推论,解题时要认真审题,仔细解答二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据题意,可知,结合三角函数的同角基本关系,可求出和再根据,利用两角差的余弦公式,即可求出结果.【详解】因为,所以,因为,所以,又,所以,所以.故答案为:.14、①.34##0.75②.-【解析】利用三角函数的定义和诱导公式求出结果【详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,15、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.16、8100【解析】将代入,化简即可得答案.【详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),(2)单调递增(3)【解析】(1)根据函数奇偶性的性质即可求,的值;(2)根据指数函数的单调性即可判断的单调性;(3)根据函数的单调性将不等式在上恒成立,进行转化,即可求实数的取值范围【小问1详解】解:因为是偶函数,所以,即,则,即,所以,即,解得若是奇函数,又定义域为,则,即,解得;【小问2详解】解:因为,所以,因为函数单调递增,函数单调递减,所以单调递增;小问3详解】解:由(2)知单调递增;则不等式在上恒成立,等价为在上恒成立,即在上恒成立,则,设,则在上单调递增,∴,则,所以实数的取值范围是.18、(1)A=2,8,(2)∁(3)2,+∞【解析】(1)根据函数y=log8x和函数y=(2)先求出集合A与集合B的交集,再求补集即可(3)根据集合∁和集合A的交集为空集,可直接求出a的取值范围【小问1详解】根据题意,可得:log8813≤log故有:A=函数y=2x在区间-∞,+∞综上,答案为:A=2,8,【小问2详解】由(1)可知:A=2,8,则有:A∩B=故有:∁故答案为:-∞,2【小问3详解】由于A=x2≤x≤8,且A∩C≠∅则有:a>2,故a的取值范围为:2,+∞故答案为:2,+∞19、(1)(2)万箱【解析】(1)分,两种情况,结合利润销售收入总成本公式,即可求解(2)根据已知条件,结合二次函数的性质,以及基本不等式,分类讨论求得最大值后比较可得【小问1详解】当时,,当时,,故关于的函数解析式为小问2详解】当时,,故当时,取得最大值,当时,,当且仅当,即时,取得最大值,综上所述,当时,取得最大值,故年产量为万箱时,该口罩生产厂家所获得年利润最大20、(1),为上的增函数;(2).【解析】(1)由奇函数的定义即可求解的值,因为,所以由复合函数单调性的判断法则即可判断的单调性;(2)由题意,原问题等价于,令,则,利用二次函数的性质可求得的最小值,从而即可得答案.【小问1详解】解:∵函数是R上的奇函数,∴,即对任意恒成立,∴,∵,又在上单调递增且,且在单调递增,所以为上的增函数;【小问2详解】解:由已知在内有解,即在有解,令,则,因为在上单调递减,所以,所以,所以实数b的取值范围为.21、(1),证明见解析;(2).【解析】(1)由列方程求参数a,令判断的大小关系即可证结论;(2)根据指数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业市场营销宣传协议
- 2025年传统工艺振兴战略谅解协议
- 2025年中学食品安全监管协议
- 2025年公共环境策划改善协议
- 2025年导师学员携手共进协议书
- 2025年度股权合伙财产分割协议范例
- 江苏省2025年土地使用权互换合同
- 2025年临时办公设施租赁合同
- 2025年企业股权融资协议书规范文本
- 2025年商业地产合作协议标准版
- 购买演唱会门票的合同模板
- DB32-T 4790-2024建筑施工特种作业人员安全操作技能考核标准
- 2022年安徽阜阳太和县人民医院本科及以上学历招聘笔试历年典型考题及考点剖析附带答案详解
- 顶管工程施工及验收技术标准
- 【基于现金流的企业财务风险探究文献综述4100字】
- TD/T 1036-2013 土地复垦质量控制标准(正式版)
- 安全警示教育的会议记录内容
- 2024年度-银行不良清收技巧培训课件(学员版)
- 燃烧爆炸理论及应用 课件 第1-3章 绪论、燃烧及其灾害、物质的燃烧
- 装饰装修施工新工艺
- 事业单位网络安全知识培训
评论
0/150
提交评论