2023-2024学年安徽省舒城一中高一上数学期末达标检测试题含解析_第1页
2023-2024学年安徽省舒城一中高一上数学期末达标检测试题含解析_第2页
2023-2024学年安徽省舒城一中高一上数学期末达标检测试题含解析_第3页
2023-2024学年安徽省舒城一中高一上数学期末达标检测试题含解析_第4页
2023-2024学年安徽省舒城一中高一上数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省舒城一中高一上数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若函数图象上所有点的横坐标向右平移个单位,纵坐标保持不变,得到的函数图象关于轴对称,则的最小值为()A. B.C. D.2.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则3.已知,,,,则A. B.C. D.4.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.5.半径为的半圆卷成一个圆锥,则它的体积是()A. B.C. D.6.设,则a,b,c的大小关系是()A. B.C. D.7.设,满足约束条件,则的最小值与最大值分别为()A., B.2,C.4,34 D.2,348.已知函数为奇函数,则()A.-1 B.0C.1 D.29.已知,,,则A. B.C. D.10.已知命题p:,,则()A., B.,C., D.,11.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.12.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数的图象恒过点P,若点P在角的终边上,则_________14.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________15.设,则______.16.已知一组数据,,…,的平均数,方差,则另外一组数据,,…,的平均数为______,方差为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y18.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围19.已知全集,集合,(1)求,;(2)若,,求实数m的取值范围.20.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围21.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.22.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由题设可得,根据已知对称性及余弦函数的性质可得,即可求的最小值.【详解】由题设,关于轴对称,∴且,则,,又,∴的最小值为.故选:B.2、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A3、C【解析】分别求出的值再带入即可【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题4、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.5、C【解析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【详解】设底面半径为r,则,所以.所以圆锥高.所以体积.故选:C.【点睛】本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.6、C【解析】比较a、b、c与0和1的大小即可判断它们之间的大小.【详解】,,,故故选:C.7、D【解析】画出约束条件表示的可行域,通过表达式的几何意义,判断最大值与最小值时的位置求出最值即可【详解】解:由,满足约束条件表示的可行域如图,由,解得的几何意义是点到坐标原点的距离的平方,所以的最大值为,的最小值为:原点到直线的距离故选D【点睛】本题考查简单的线性规划的应用,表达式的几何意义是解题的关键,考查计算能力,属于常考题型.8、C【解析】利用函数是奇函数得到,然后利用方程求解,,则答案可求【详解】解:函数为奇函数,当时,,所以,所以,,故故选:C.9、A【解析】故选10、A【解析】直接利用全称命题的否定即可得到结论【详解】因为命题p:,,所以:,.故选:A.11、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.12、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解.【详解】易知恒过点,即,因为点在角的终边上,所以,所以,,所以,故答案为:.14、【解析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.15、1【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【详解】由,可得,,所以.故答案为:.16、①.11②.54【解析】由平均数与方差的性质即可求解.【详解】解:由题意,数据,,…,的平均数为,方差为故答案:11,54.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,18、(1)(2)或【解析】(1)先求集合B的补集,再与集合A取交集;(2)把“”是“”的充分条件转化为集合A与B之间的关系再求解的取值范围【小问1详解】时,,又故【小问2详解】由题意知:“”是“”的充分条件,即当时,,,满足题意;当时,,欲满足则必须解之得综上得的取值范围为或19、(1),或(2)【解析】(1)首先解指数不等式求出集合,再根据交集、并集、补集的定义计算可得;(2)依题意可得,即可得到不等式,解得即可;小问1详解】解:由,即,解得,所以,又,所以,或,所以或;【小问2详解】解:因为,所以,所以,解得,即;20、(1)(2)【解析】(1)由幂函数定义列出方程,求出m的值,检验函数单调性,舍去不合题意的m的值;(2)在第一问的基础上,由函数单调性得到集合,由并集结果得到,从而得到不等式组,求出k的取值范围.【小问1详解】依题意得:,∴或当时,在上单调递减,与题设矛盾,舍去当时,上单调递增,符合要求,故.【小问2详解】由(1)可知,当时,函数和均单调递增∴集合,又∵,∴,∴,∴,∴实数k的取值范围是.21、(1)周期为,最大值为2,最小值为-1(2)【解析】(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式22、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方程根的关系求解即可.【小问1详解】解:因为是定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论